Skip to main content

Advertisement

Log in

Carbon emission intensity and biased technical change in China’s different regions: a novel multidimensional decomposition approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The decomposition analysis has been employed to discover the driving factors of carbon emission intensity, but the current studies assume that production functions are under the condition of the neutral technical change. Grounded on biased technical change production theory, this paper proposes a novel multidimensional decomposition approach which combines production-theory decomposition analysis (PDA) and index decomposition analysis (IDA). This novel approach can illustrate how energy structure effect, element substitution effect, efficiency change effect, input biased technical change, output biased technical change and magnitude of technical change affect carbon emission intensity of China’s 30 provinces. The results indicate that during the 11th FYP and 13th FYP, output biased technical change and the magnitude of technical change are the critical factors in China’s carbon emission intensity, while other four drivers increase carbon emissions. But, during the 12th FYP, the role of six drivers has been reversed contrasting 11th FYP and 13th FYP. In addition, we also explore the impact of each driver from the perspective of regional heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated and analyzed during the current study are available in the National Bureau of Statistics of China and Ministry of Ecology and Environment of the People's Republic of China repository, http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ and http://english.mee.gov.cn/Resources/Reports/.

Notes

  1. The data is from the Ministry of Ecology and Environment of the People’s Republic of China in 2019.

  2. The data is from the National Bureau of Statistics of China.

  3. FYP means five-year plan in China, which is a kind of state developing strategy. In fact, the 13th Five-Year Plan is 2016–2020, but due to data limitations, our study period only covers 2019.

References

  • Acemoglu D (1998) Why do new technologies complement skills? Directed technical change and wage inequality. Q J Econ 113(4):1055–1089

    Article  Google Scholar 

  • Acemoglu D (2002) Directed technical change. Rev Econ Stud 69(4):781–809

    Article  Google Scholar 

  • Alfoldy B, Mahfouz M, Gregoriˇc A et al (2021) Atmospheric concentrations and emission ratios of black carbon and nitrogen oxides in the Arabian/Persian Gulf region. Atmos Environ 2021:256

    Google Scholar 

  • Cao Q, Kang W, Xu S et al (2019) Estimation and decomposition analysis of carbon emissions from the entire production cycle for Chinese household consumption. J Environ Manag 247:525–537

    Article  Google Scholar 

  • Chen L, Cai W, Ma M (2020) Decoupling or delusion? Mapping carbon emission per capita based on the human development index in southwest China. Sci Total Environ 741:138722

    Article  CAS  Google Scholar 

  • Cheng Z, Li L, Liu J (2018) Industrial structure, technical change and carbon intensity in China’s provinces. Renew Sust Energ Rev 81:2935–2946

    Article  Google Scholar 

  • Cheng S, Fan W, Meng F et al (2020) Toward low-carbon development: assessing emissions-reduction pressure among Chinese cities. J Environ Manag 271:111036

    Article  CAS  Google Scholar 

  • Chontanawat J, Wiboonchutikula P, Buddhivanich A (2020) An LMDI decomposition analysis of carbon emissions in the Thai manufacturing sector. Energy Rep 6:705–710

    Article  Google Scholar 

  • Ding L, Yang Y, Wang W et al (2019) Regional carbon emission efficiency and its dynamic evolution in China: a novel cross efficiency-Malmquist productivity index. J Clean Prod 241:118260

    Article  Google Scholar 

  • Ding L, Yang Y, Zheng H et al (2020) Heterogeneity and the influencing factors of provincial green-biased technological progress in China: based on a novel Malmquist-Luenberger multidimensional decomposition index. China Popul Resources Environ 41(09):84–92

    CAS  Google Scholar 

  • Dong F, Yu B, Hadachin T et al (2018) Drivers of carbon emission intensity change in China. Resour Conserv Recycl 129:187–201

    Article  Google Scholar 

  • Du K, Xie C, Ouyang X (2017) A comparison of carbon dioxide (CO2) emission trends among provinces in China. Renew Sust Energ Rev 73:19–25

    Article  CAS  Google Scholar 

  • Du Y, Li Z, Du J et al (2019) Public environmental appeal and innovation of heavy-polluting enterprises. J Clean Prod 222:1009–1022

    Article  Google Scholar 

  • Erdogan S (2021) Dynamic nexus between technological innovation and buildings Sector’s carbon emission in BRICS countries. J Environ Manag 293:112780

    Article  CAS  Google Scholar 

  • Essid H, Ouellette P, Vigeant S (2014) Productivity, efficiency, and technical change of Tunisian schools: a bootstrapped Malmquist approach with quasi-fixed inputs. Omega 42(1):88–97

    Article  Google Scholar 

  • Gu S, Fu B, Thriveni T et al (2019) Coupled LMDI and system dynamics model for estimating urban CO2 emission mitigation potential in Shanghai, China. J Clean Prod 240(10):118034

    Article  CAS  Google Scholar 

  • Huang C, Zhang X, Liu K (2021) Effects of human capital structural evolution on carbon emissions intensity in China: a dual perspective of spatial heterogeneity and nonlinear linkages. Renew Sust Energ Rev 135:110258

    Article  CAS  Google Scholar 

  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the IPCC, Kanagawa

    Google Scholar 

  • Jiang M, An H, Gao X et al (2021) Structural decomposition analysis of global carbon emissions: the contributions of domestic and international input changes. J Environ Manag 294:112942

    Article  CAS  Google Scholar 

  • Kaya Y (1989) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. Intergovernmental Panel on Climate Change/Response Strategies Working Group May.

  • Kim K, Kim Y (2012) International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition. Energy Econ 34(5):1724–1741

    Article  Google Scholar 

  • Kong Q, Peng D (2021) Resource misallocation, production efficiency and outward foreign direct investment decisions of Chinese enterprises. Res Int Bus Financ 55:101343

    Article  Google Scholar 

  • Li J, See KF, Chi J (2019) Water resources and water pollution emissions in China’s industrial sector: a green-biased technological progress analysis. J Clean Prod 229:1412–1426

    Article  Google Scholar 

  • Liang S, Zhao J, He S et al (2019) Spatial econometric analysis of carbon emission intensity in Chinese provinces from the perspective of innovation-driven. Environ Sci Pollut Res 26(14):13878–13895

    Article  CAS  Google Scholar 

  • Lin B, Du K (2014) Decomposing energy intensity change: a combination of index decomposition analysis and production-theoretical decomposition analysis. Appl Energy 129:158–165

    Article  Google Scholar 

  • Lin B, Wang M (2021) The role of socio-economic factors in China’s CO2 emissions from production activities. Sustain Prod Consump 27:217–227

    Article  Google Scholar 

  • Lin B, Zhou Y (2021) Does the Internet development affect energy and carbon emission performance? Sustain Prod Consump 28:1–10

    Article  CAS  Google Scholar 

  • Liu Z, Guan D, Moore S et al (2015) Climate policy: steps to China’s carbon peak. Nature 522(7556):279–281

    Article  CAS  Google Scholar 

  • Long R, Gan X, Chen H et al (2020) Spatial econometric analysis of foreign direct investment and carbon productivity in China: two-tier moderating roles of industrialization development. Resour Conserv Recycl 155:104677

    Article  Google Scholar 

  • Lu F, Zhang Y (2013) Spatial patterns of provincial carbon source and sink in China. Prog Geogr 32(12):1751–1759

    Google Scholar 

  • Ma M, Yan R, Du Y et al (2017) A methodology to assess China’s building energy savings at the national level: an IPAT–LMDI model approach. J Clean Prod 143(1):784–793

    Article  Google Scholar 

  • Ma M, Cai W, Cai W (2018) Carbon abatement in China’s commercial building sector: a bottom-up measurement model based on kaya-LMDI methods. Energy 165(Part A):350–368

    Article  Google Scholar 

  • Nguyen DH, Chapman AJ, Farabiasl H (2019) Nation-wide emission trading model for economically feasible carbon reduction in Japan. Appl Energy 255:113869

    Article  Google Scholar 

  • Ninpanit P, Malik A, Wakiyama T, Geschke A et al (2019) Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives. Energy Policy 133:110877

    Article  CAS  Google Scholar 

  • Peng J, Xiao J, Wen L et al (2019) Energy industry investment influences total factor productivity of energy exploitation: a biased technical change analysis. J Clean Prod 237(10):117847

    Article  Google Scholar 

  • Peng H, Qi S, Cui J (2021) The environmental and economic effects of the carbon emissions trading scheme in China: The role of alternative allowance allocation. Sustain Prod Consump 28:105–115

    Article  Google Scholar 

  • Shan H (2008) Re-estimating the capital stock of China:1952-2006. J QuantTechn Econ 25(10):17–31

    Google Scholar 

  • Shao S, Yang Z, Yang L et al (2020) Synergetic conservation of water and energy in China’s industrial sector: from the perspectives of output and substitution elasticities. J Environ Manag 259(1):110045

    Article  Google Scholar 

  • Song H, Zhang K, Piao S, Liu L, Wang Y, Chen Y, Yang Z, Zhu L, Wan S (2019) Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmos Environ 213:585–596

    Article  CAS  Google Scholar 

  • Song M, Xie Q, Wang S et al (2020) Intensity of environmental regulation and environmentally biased technology in the employment market. Omega 100:102201

    Article  Google Scholar 

  • Su B, Ang B (2017) Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Econ 65:137–147

    Article  Google Scholar 

  • Su B, Ang B, Liu Y (2021) Multi-region input-output analysis of embodied emissions and intensities: spatial aggregation by linking regional and global datasets. J Clean Prod 313(1):127894

    Article  Google Scholar 

  • Tang K, Liu Y, Zhou D et al (2021) Urban carbon emission intensity under emission trading system in a developing economy: evidence from 273 Chinese cities. Environ Sci Pollut Res 28(5):5168–5179

    Article  CAS  Google Scholar 

  • Wang C (2007) Decomposing energy productivity change: a distance function approach. Energy 32(8):1326–1333

    Article  Google Scholar 

  • Wang M, Feng C (2019) Decoupling economic growth from carbon dioxide emissions in China’s metal industrial sectors: a technological and efficiency perspective. Sci Total Environ 691:1173–1181

    Article  CAS  Google Scholar 

  • Wang M, Feng C (2020) The impacts of technological gap and scale economy on the low-carbon development of China’s industries: an extended decomposition analysis. Technol Forecast Soc Chang 157:120050

    Article  Google Scholar 

  • Wang M, Feng C (2021) The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China’s carbon dioxide emissions: a multi-tier meta-frontier DEA-based decomposition analysis. Technol Forecast Soc Chang 164:120507

    Article  Google Scholar 

  • Wang Y, Zheng Y (2021) Spatial effects of carbon emission intensity and regional development in China. Environ Sci Pollut Res 28(11):14131–14143

    Article  CAS  Google Scholar 

  • Wang Q, Chiu Y, Chiu C (2015) Driving factors behind carbon dioxide emissions in China: a modified production-theoretical decomposition analysis. Energy Econ 51:252–260

    Article  Google Scholar 

  • Wang Z, Su B, Xie R et al (2019) China’s aggregate embodied co2 emission intensity from 2007 to 2012: a multi-region multiplicative structural decomposition analysis. Energy Econ 85:104568

    Article  Google Scholar 

  • Wang F, Wang G, Liu J et al (2019a) How does urbanization affect carbon emission intensity under a hierarchical nesting structure? Empirical research on the China Yangtze River Delta urban agglomeration. Environ Sci Pollut Res 26(31):31770–31785

    Article  CAS  Google Scholar 

  • Wang C, Guo Y, Shao S et al (2020a) Regional carbon imbalance within China: an application of the Kaya-Zenga index. J Environ Manag 262(May15):110378

    Article  Google Scholar 

  • Wang X, Wei Y, Shao Q (2020b) Decomposing the decoupling of co2 emissions and economic growth in China’s iron and steel industry. Resour Conserv Recycl 152:104509

    Article  Google Scholar 

  • Wang B, Yu M, Zhu Y et al (2021a) Unveiling the driving factors of carbon emissions from industrial resource allocation in China: a spatial econometric perspective. Energy Policy 158:112557

    Article  CAS  Google Scholar 

  • Wang Y, Liao M, Wang Y et al (2021b) The impact of foreign direct investment on China’s carbon emissions through energy intensity and emissions trading system. Energy Econ 97l:105212

    Article  Google Scholar 

  • Wu Y, Tam VW, Shuai C et al (2019) Decoupling China’s economic growth from carbon emissions: empirical studies from 30 Chinese provinces (2001–2015). Sci Total Environ 656:576–588

    Article  CAS  Google Scholar 

  • Wu S, Zheng X, Khanna N et al (2020) Fighting coal—effectiveness of coal-replacement programs for residential heating in China: empirical findings from a household survey. Energy Sustain Dev 55:170–180

    Article  Google Scholar 

  • Xiao H, Sun K, Tu X et al (2020) Diversified carbon intensity under global value chains: a measurement and decomposition analysis. J Environ Manag 272(15):111076

    Article  CAS  Google Scholar 

  • Xu S, He Z, Long R (2014) Factors that influence carbon emissions due to energy consumption in China: decomposition analysis using LMDI. Appl Energy 127:182–193

    Article  CAS  Google Scholar 

  • Xu X, Niu D, Xiao B et al (2020) Policy analysis for grid parity of wind power generation in China. Energy Policy 138:111225

    Article  Google Scholar 

  • Yan Q, Wang Y, Baležentis T et al (2019) Analysis of China’s regional thermal electricity generation and CO2 emissions: decomposition based on the generalized Divisia index. Sci Total Environ 682:737–755

    Article  CAS  Google Scholar 

  • Yang L, Li Z (2017) Technology advance and the carbon dioxide emission in China—empirical research based on the rebound effect. Energy Policy 101:150–161

    Article  CAS  Google Scholar 

  • Yang G, Zha D, Wang X et al (2020) Exploring the nonlinear association between environmental regulation and carbon intensity in China: the mediating effect of green technology. Ecol Indic 114:106309

    Article  Google Scholar 

  • Yang J, Hao Y, Feng C (2021) A race between economic growth and carbon emissions: what play important roles towards global low-carbon development? Energy Econ 100:105327

    Article  Google Scholar 

  • Zha D, Yang G, Wang Q (2019) Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method. Energy Econ 84:104521

    Article  Google Scholar 

  • Zhang M, Mu H, Ning Y (2009) Accounting for energy-related CO2 emission in China, 1991-2006. Energy Policy 37(3):767–773

    Article  Google Scholar 

  • Zhang W, Li J, Li G et al (2020a) Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy 1961:117117

    Article  Google Scholar 

  • Zhang W, Tang X, Yang G et al (2020b) Decomposition of CO2 emission intensity in Chinese MIs through a development mode extended LMDI method combined with a production-theoretical approach. Sci Total Environ 702:134787

    Article  CAS  Google Scholar 

  • Zhao G, Liu C (2020) Carbon emission intensity embodied in trade and its driving factors from the perspective of global value chain. Environ Sci Pollut Res 27:32062–32075

    Article  CAS  Google Scholar 

  • Zhou P, Ang BW (2008) Decomposition of aggregate CO2 emissions: a production theoretical approach. Energy Econ 30:1054–1067

    Article  Google Scholar 

  • Zhou X, Zhou D, Wang Q et al (2020) Who shapes China’s carbon intensity and how?A demand-side decomposition analysis. Energy Econ 85:104600

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 71973132) and National Social Science Fund of China (No. 19VHQ002).

Author information

Authors and Affiliations

Authors

Contributions

LD designed the study and wrote and reviewed the manuscript; KZ contributed to the writing of the final version of the manuscript; YY collected the data and analyzed the data and wrote the manuscript. All authors have read and approved the final version of the paper.

Corresponding author

Correspondence to Ying Yang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Eyup Dogan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3

Table 3 Region and their abbreviation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zhang, K. & Yang, Y. Carbon emission intensity and biased technical change in China’s different regions: a novel multidimensional decomposition approach. Environ Sci Pollut Res 29, 38083–38096 (2022). https://doi.org/10.1007/s11356-021-18098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18098-7

Keywords

Navigation