Skip to main content
Log in

Wild mushrooms from Ilgaz Mountain National Park (Western Black Sea, Turkey): element concentrations and their health risk assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K contents of some edible (Chlorophyllum rhacodes, Clavariadelphus truncatus, Clitocybe nebularis, Hydnum repandum, Hygrophorus pudorinus, Infundibulicybe gibba, Lactarius deliciosus, L. piperatus, L. salmonicolor, Macrolepiota mastoidea, Russula grata, Suillus granulatus, and Tricholoma imbricatum), inedible (Amanita pantherina, Geastrum triplex, Gloeophyllum sepiarium, Hypholoma fasciculare, Phellinus vorax, Pholiota limonella, Russula anthracina, and Tapinella atrotomentosa), and poisonous mushroom species (Amanita pantherina and Hypholoma fasciculare) collected from Ilgaz Mountain National Park (Western Black Sea, Turkey). The element contents of the mushrooms were determined to be 18.0–1239.1, 0.2–4.6, 0.1–3.4, 0.2–3.2, 1.0–8.9, 3.3–59.9, 3.7–220.4, 21.3–154.1, 6.4–754.3, 15.8–17,473.0, 413.0–5943.0, and 2803.0–24,490.0 mg·kg-1, respectively. In addition to metal contents, the daily intakes of metal (DIM) and Health Risk Index (HRI) values of edible mushrooms were also calculated. Both DIM and HRI values of mushroom species except L. salmanicolor, M. mastoidea, and R. grata were within the legal limits. However, it was determined that the Fe content of L. salmanicolor and M. mastoidea and Cd content of R. grata were above the legal limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  • Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, Hassan MAA, Saleh MY (2007) Effects of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt - a case study. Water Air Soil Pollut 186:233–254. https://doi.org/10.1007/s11270-007-9480-3

    Article  CAS  Google Scholar 

  • Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346:f1378

    Article  Google Scholar 

  • Achmad RT, Auerkari EI (2017) Effects of chromium on human body. Annu Res Rev Biol 13:1–8

    Article  Google Scholar 

  • Agrawal DC, Dhanasekaran M (2019) Medicinal mushrooms: Recent Progress in Research and Development. Springer

  • Alonso J, Garcia MA, Perez-Lopez M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188. https://doi.org/10.1007/s00244-002-2051-0

    Article  CAS  Google Scholar 

  • Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N (2012) Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol Environ Saf 78:184–194. https://doi.org/10.1016/j.ecoenv.2011.11.018

    Article  CAS  Google Scholar 

  • Anderson JJ, Garner SC (1995) Calcium and phosphorus in health and disease, vol 10. CRC Press

    Google Scholar 

  • Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362

    Article  CAS  Google Scholar 

  • Ayaz FA, Torun H, Ozel A, Col M, Duran C, Sesli E, Colak A (2011) Nutritional value of some wild edible mushrooms from Black Sea Region (Turkey). Turkish J Biochem 36:213–221

    CAS  Google Scholar 

  • Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128:557–564

    CAS  Google Scholar 

  • Campos JA, Tejera NA (2011) Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res 143:540–554. https://doi.org/10.1007/s12011-010-8853-4

    Article  CAS  Google Scholar 

  • Campos JA, Tejera NA, Sanchez CJ (2009) Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22:835–841. https://doi.org/10.1007/s10534-009-9230-7

    Article  CAS  Google Scholar 

  • Carvalho ML, Pimentel AC, Fernandes B (2005) Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Anal Sci 21:747–750. https://doi.org/10.2116/analsci.21.747

    Article  CAS  Google Scholar 

  • Cayir A, Coskun M, Coskun M (2010) The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol Trace Elem Res 134:212–219. https://doi.org/10.1007/s12011-009-8464-0

    Article  CAS  Google Scholar 

  • Chowaniak M, Niemiec M, Paluch Ł (2017) Bioconcentration of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in Lactarius salmonicolor in the Western Carpathians. J Elem 22:1537–1547

    Google Scholar 

  • Colak A, Faiz O, Sesli E (2009) Nutritional composition of some wild edible mushrooms. Turkish J Biochem 34:25–31

    CAS  Google Scholar 

  • Colak A, Kolcuoğlu Y, Sesli E (2007) Biochemical composition of some Turkish fungi. Asian J Chem 19:2193–2199

    CAS  Google Scholar 

  • Cui Y-J, Zhu Y-G, Zhai R-H, Chen D-Y, Huang Y-Z, Qiu Y, Liang J-Z (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791. https://doi.org/10.1016/j.envint.2004.01.003

    Article  CAS  Google Scholar 

  • Cvetkovic JS, Mitic VD, Stankov-Jovanovic VP, Dimitrijevic MV, Nikolic-Mandic SD (2015) Elemental Composition of wild edible mushrooms from Serbia. Anal Lett 48:2107–2121. https://doi.org/10.1080/00032719.2015.1010118

    Article  CAS  Google Scholar 

  • D’Elia L, Barba G, Cappuccio FP, Strazzullo P (2011) Potassium intake, stroke, and cardiovascular disease: a meta-analysis of prospective studies. J Am Coll Cardiol 57:1210–1219

    Article  CAS  Google Scholar 

  • De Silva DD, Rapior S, Sudarman E, Stadler M, Xu JC, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40. https://doi.org/10.1007/s13225-013-0265-2

    Article  Google Scholar 

  • Demirbas A (2000) Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chem 68:415–419. https://doi.org/10.1016/s0308-8146(99)00210-1

    Article  CAS  Google Scholar 

  • Demirbas A (2003) Trace metal concentrations in ashes from various types of biomass species. Energy Sources 25:743–751. https://doi.org/10.1080/00908310390212435

    Article  CAS  Google Scholar 

  • Demirbaş A (2001a) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457

    Article  Google Scholar 

  • Demirbaş A (2001b) Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem 74:293–301

    Article  Google Scholar 

  • Deng Q et al (2013) Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China. Environ Health 12:30

    Article  CAS  Google Scholar 

  • Dogan HH, Sanda MA, Uyanboz R, Ozturk C, Cetin U (2006) Contents of metals in some wild mushrooms - its impact in human health. Biol Trace Elem Res 110:79–94. https://doi.org/10.1385/bter:110:1:79

    Article  CAS  Google Scholar 

  • Doğan HH, Şanda MA, Akata I (2012) Mn, Fe, K, Na, and P contents in some Tricholoma (Fr.) staude (Tricholomataceae) taxa from central Anatolia. Turkey Fresenius Environ Bull 21:3389–3393

    Google Scholar 

  • Duru ME, Cayan GT (2015) Biologically active terpenoids from mushroom origin: a review. Rec Nat Prod 9:456–483

    CAS  Google Scholar 

  • Elekes CC, Busuioc G, Ionita G (2010) The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms. Not Bot Horti Agrobot Cluj Napoca 38:147–151

    CAS  Google Scholar 

  • Falandysz J, Borovicka J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. https://doi.org/10.1007/s00253-012-4552-8

    Article  CAS  Google Scholar 

  • Falandysz J, Kunito T, Kubota R, Gucia M, Mazur A, Falandysz JJ, Tanabe S (2008) Some mineral constituents of parasol mushroom (Macrolepiota procera). J Environ Sci Health B 43:187–192. https://doi.org/10.1080/03601230701795247

    Article  CAS  Google Scholar 

  • Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Della Croce C (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25:597–610. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40

    Article  CAS  Google Scholar 

  • Gargano ML, van Griensven L, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst 151:548–565. https://doi.org/10.1080/11263504.2017.1301590

    Article  Google Scholar 

  • Gaso M, Segovia N, Morton O, Lopez JL, Machuca A, Hernandez E (2007) Radioactive and stable metal bioaccumulation, crystalline compound and siderophore detection in Clavariadelphus truncatus. J Environ Radioact 97:57–69

    Article  CAS  Google Scholar 

  • Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K (2009) Determination of mineral contents of wild-grown edible mushrooms. Food Chem 113:1033–1036

    Article  CAS  Google Scholar 

  • Gezer K, Kaygusuz O (2014) An assessment of the heavy metal content of various wild edible mushrooms in the Denizli province, Turkey. J Environ Prot Ecol 15:425–432

    CAS  Google Scholar 

  • Gramss G, Voigt K-D (2013) Clues for regulatory processes in fungal uptake and transfer of minerals to the basidiospore. Biol Trace Elem Res 154:140–149

    Article  CAS  Google Scholar 

  • Guggenheim AG, Wright KM, Zwickey HL (2014) Immune modulation from five major mushrooms: application to integrative oncology. Integr Med 13:32

    Google Scholar 

  • Guillamon E, Garcia-Lafuente A, Lozano M, D’Arrigo M, Rostagno MA, Villares A, Martinez JA (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81:715–723. https://doi.org/10.1016/j.fitote.2010.06.005

    Article  CAS  Google Scholar 

  • Gupta CP (2014) Role of iron (Fe) in body. (IOSR-JAC 7:38–46

  • Huang QQ, Jia Y, Wan YA, Li HF, Jiang RF (2015) Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci 80:H1612–H1618. https://doi.org/10.1111/1750-3841.12923

    Article  CAS  Google Scholar 

  • Isildak O, Turkekul I, Elmastas M, Tuzen M (2004) Analysis of heavy metals in some wild-grown edible mushrooms from the Middle Black Sea region, Turkey. Food Chem 86:547–552. https://doi.org/10.1016/j.foodchem.2003.09.007

    Article  CAS  Google Scholar 

  • Jamnická G, Bučinová K, Havranová I, Urban A (2007) Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. For Ecol Manage 248:26–35

    Article  Google Scholar 

  • JECFA (1993) Joint FAO/WHO expert Committee on Food Additives. Evaluation of certain food additives and contaminants: 41st report of the Joint FAO/WHO expert Committee on Food Additives. World Health Organization, Technical Reports Series No. 837, Geneva

  • Jedidi IK, Ayoub IK, Philippe T, Bouzouita N (2017) Chemical composition and nutritional value of three Tunisian wild edible mushrooms. J Food Meas Charact 11:2069–2075. https://doi.org/10.1007/s11694-017-9590-6

    Article  Google Scholar 

  • Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487. https://doi.org/10.1007/s12088-011-0110-9

    Article  CAS  Google Scholar 

  • Kalac P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35. https://doi.org/10.1016/s0308-8146(01)00171-6

    Article  CAS  Google Scholar 

  • Kalac P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15. https://doi.org/10.1016/j.foodchem.2010.02.045

    Article  CAS  Google Scholar 

  • Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281. https://doi.org/10.1016/s0308-8146(99)00264-2

    Article  CAS  Google Scholar 

  • Karaman M, Novakovic M, Matavuly M (2012) Fundamental fungal strategies in restoration of natural environment. In: Silva AP, Sol M (eds) Fungi: Types, environmental impact and role in disease: Nova Science Publishers Inc, New York

  • Kaya A, Bag H (2010) Trace element contents of edible macrofungi growing in Adiyaman. Turkey Asian J Chem 22:1515

    CAS  Google Scholar 

  • Koh ES et al (2014) Association of blood manganese level with diabetes and renal dysfunction: a cross-sectional study of the Korean general population. BMC Endo Dis 14:1–8

    Google Scholar 

  • Konuk M, Afyon A, Yagiz D (2007) Minor element and heavy metal contents of wild growing and edible mushrooms from Western Black Sea Region of Turkey. Fresenius Environ Bull 16:1359–1362

    CAS  Google Scholar 

  • Kosanic M, Rankovic B, Rancic A, Stanojkovic T (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24:477–484. https://doi.org/10.1016/j.jfda.2016.01.008

    Article  CAS  Google Scholar 

  • Leroy J (1926) Necessite du magnesium pour la croissance de la souris. C R Seances Soc Biol Fil 94:431

    Google Scholar 

  • Li XZ et al (2017) Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J Hazard Mater 330:1–8. https://doi.org/10.1016/j.jhazmat.2017.01.047

    Article  CAS  Google Scholar 

  • Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300. https://doi.org/10.1016/j.foodchem.2015.05.010

    Article  CAS  Google Scholar 

  • Macdonald TL, Martin RB (1988) Aluminum ion in biological systems. Trends Biochem Sci 13:15–19

    Article  CAS  Google Scholar 

  • Mleczek M et al (2016a) Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ Sci Pollut Res 23:16280–16295. https://doi.org/10.1007/s11356-016-6760-8

    Article  CAS  Google Scholar 

  • Mleczek M et al (2016b) The role of selected tree species in industrial sewage sludge/flotation tailing management. Int J Phytorem 18:1086–1095. https://doi.org/10.1080/15226514.2016.1183579

    Article  CAS  Google Scholar 

  • Mleczek M, Siwulski M, Stuper-Szablewska K, Rissmann I, Sobieralski K, Golinski P (2013a) Accumulation of elements by edible mushroom species: Part I. Problem of trace element toxicity in mushrooms. J Environ Sci Health B 48:69–81. https://doi.org/10.1080/03601234.2012.716733

    Article  CAS  Google Scholar 

  • Mleczek M, Siwulski M, Stuper-Szablewska K, Sobieralski K, Magdziak Z, Golinski P (2013b) Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents. J Environ Sci Health B 48:308–317. https://doi.org/10.1080/03601234.2013.743799

    Article  CAS  Google Scholar 

  • Murati E, Hristovski S, Karadelev M, Melovski L (2019) The impact of thermal power plant Oslomej (Kichevo valley, Macedonia) on heavy metal contents (Ni, Cu, Zn, Fe, Mn, Pb, Cd) in fruiting bodies of 15 species of wild fungi. Air Qual Atmos Health 12:353–358

    Article  CAS  Google Scholar 

  • Murati E, Hristovski S, Melovski L, Karadelev M (2015) Heavy metals content in Amanita pantherina in a vicinity of the thermo-electric power plant Oslomej, Republic of Macedonia. Fresenius Environ Bull 24:1981–1984

    CAS  Google Scholar 

  • Mushtaq W, Hayri B, Akata İ, Sevindik M (2020) Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi 23:592–595

    Google Scholar 

  • Niemiec M, Chowaniak M, Paluch Ł (2017) Accumulation of chromium, aluminum, barium and arsenic in selected elements of a forest ecosystem in the Przedbabiogórskie Mountain Range in the Western Carpathians. J Elem 22:1107–1116

    Google Scholar 

  • Niemiec M, Sikora J, Chowaniak M, Szelag-Sikora A, Kubon M (2018) Bioaccumulation of Iron, Manganese, Boron, Lithium and Cobalt in Lactarius salmonicolor and Abies alba M. in the Przedbabiogorski Range in the Western Carpathians. Rocz Ochr Srodowiska 20:1386–1401

    Google Scholar 

  • Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clin Toxicol 3:0495

    Google Scholar 

  • Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compost Anal 20:480–486

    Article  CAS  Google Scholar 

  • Paterson RRM, Lima N (2014) Biomedical effects of mushrooms with emphasis on pure compounds. Biomed J 37:357–368

    Article  Google Scholar 

  • Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:S23–S30

    Article  CAS  Google Scholar 

  • Phan CW, David P, Naidu M, Wong KH, Sabaratnam V (2015) Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 35:355–368. https://doi.org/10.3109/07388551.2014.887649

    Article  CAS  Google Scholar 

  • Plassard C, Louche J, Ali MA, Duchemin M, Legname E, Cloutier-Hurteau B (2011) Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann for Sci 68:33–43. https://doi.org/10.1007/s13595-010-0005-7

    Article  Google Scholar 

  • Radulescu C, Stihi C, Busuioc G, Popescu IV, Gheboianu AI, Cimpoca VG (2010) Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Rom Biotechnol Lett 15:5444–5456

    CAS  Google Scholar 

  • Rakic M, Karaman M, Forkapic S, Hansman J, Kebert M, Bikit K, Mrdja D (2014) Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut Res 21:11283–11292. https://doi.org/10.1007/s11356-014-2967-8

    Article  CAS  Google Scholar 

  • Rasalanavho M, Moodley R, Jonnalagadda SB (2019) Elemental distribution including toxic elements in edible and inedible wild growing mushrooms from South Africa. Environ Sci Pollut Res 26:7913–7925

    Article  CAS  Google Scholar 

  • Rasalanavho M, Moodley R, Jonnalagadda SB (2020) Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chem 319:126596. https://doi.org/10.1016/j.foodchem.2020.126596

    Article  CAS  Google Scholar 

  • Rashid MH, Rahman MM, Correll R, Naidu R (2018) Arsenic and other elemental concentrations in mushrooms from Bangladesh: health risks. Int J Env Res Public Health 15:919. https://doi.org/10.3390/ijerph15050919

    Article  CAS  Google Scholar 

  • Rubio C et al (2018) Trace element and toxic metal intake from the consumption of canned mushrooms marketed in Spain. Environ Monit Assess 190:237. https://doi.org/10.1007/s10661-018-6614-6

    Article  CAS  Google Scholar 

  • Rzymski P, Mleczek M, Siwulski M, Gasecka M, Niedzielski P (2016) The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J Food Compost Anal 51:55–60. https://doi.org/10.1016/j.jfca.2016.06.009

    Article  CAS  Google Scholar 

  • Santos JS et al (2012) Crystal structure of a voltage-gated K+ channel pore module in a closed state in lipid membranes. J Biol Chem 287:43063–43070

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Akata I, Guven G, Tepe B (2020) Metal concentration and health risk assessment of wild mushrooms collected from the Black Sea region of Turkey. Environ Sci Pollut Res 27:26419–26441. https://doi.org/10.1007/s11356-020-09025-3

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Copur M, Yildiz D, Akata I (2011) Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem 128:731–734. https://doi.org/10.1016/j.foodchem.2011.03.097

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Tepe B, Kocak MS, Uren MC (2015) Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem 175:549–555. https://doi.org/10.1016/j.foodchem.2014.12.019

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Tepe B, Solak MH, Cetinkaya S (2012) Metal concentrations of wild edible mushrooms from Turkey. Ecol Food Nutr 51:346–363. https://doi.org/10.1080/03670244.2012.674448

    Article  Google Scholar 

  • Sesli E (2007) Trace metal contents of higher fungi from Zigana Highland in Turkey. Asian J Chem 19:636

    CAS  Google Scholar 

  • Sesli E, Dalman O (2006) Concentrations of trace elements in fruiting bodies of wild growing fungi in Rize province of Turkey. Asian J Chem 18:2179–2184

    CAS  Google Scholar 

  • Sesli E, Tuzen M (2006) Micro- and macroelement contents of edible wild growing mushrooms in Artvin province of Turkey. Asian J Chem 18:1423–1429

    CAS  Google Scholar 

  • Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater 160:462–467

    Article  CAS  Google Scholar 

  • Severoglu Z, Sumer S, Yalcin B, Leblebici Z, Aksoy A (2013) Trace metal levels in edible wild fungi. Int J Environ Sci Technol 10:295–304. https://doi.org/10.1007/s13762-012-0139-2

    Article  CAS  Google Scholar 

  • Šíma J, Vondruška J, Svoboda L, Šeda M, Rokos L (2019) The accumulation of risk and essential elements in edible mushrooms Chlorophyllum rhacodes, Suillus grevillei, Imleria badia, and Xerocomellus chrysenteron growing in the Czech Republic. Chem Biodivers 16:e1800478

    Google Scholar 

  • Siric I, Kasap A, Kos I, Markota T, Tomic D, Poljak M (2016) Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Sumarski List 140:29–37

    Google Scholar 

  • Sobolev O et al (2018) Biological role of selenium in the organism of animals and humans. Ukr J Ecol 8:654–665. https://doi.org/10.15421/2018_263

    Article  Google Scholar 

  • Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810

    Article  CAS  Google Scholar 

  • Tüzen M, Özdemir M, Demirbaş A (1998) Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chem 63:247–251

    Article  Google Scholar 

  • USEPA (2002) A review of the reference dose and reference concentration processes

  • Vetter J (1997) Chromium and nickel contents of some common edible mushroom species. Acta Aliment 26:163–170

    CAS  Google Scholar 

  • Xu Z et al. (2019) Chemical composition, antioxidant and antihyperglycemic activities of the wild Lactarius deliciosus from China. Molecules 24. https://doi.org/10.3390/molecules24071357

  • Zavastin DE, Miron A, Gherman SP, Boerescu CM, Breaban IG, Gavrilescu CM (2015) Antioxidant activity, total phenolic and metals contents of Lactarius salmonicolor (R. Heim & Leclair). Farmacia 63:755–759

    CAS  Google Scholar 

Download references

Funding

Not applicable (this study was not carried out with the financial contribution of any institution or organization).

Author information

Authors and Affiliations

Authors

Contributions

CS and AD carried out the conceptualization and research, formal analysis, and writing of the original draft. FK, AD, and IA conducted literature research, conceptualization, visualization, and data analysis. AST and CS contributed to the conceptualization, writing-reviewing, and editing processes.

Corresponding author

Correspondence to Cengiz Sarikurkcu.

Ethics declarations

Ethics approval and consent to participate

Not applicable (this paper does not contain studies involving human participants, human data, or human tissue).

Consent to publish

Not applicable (this paper does not contain any individual person’s data in any form).

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11356_2021_18011_MOESM1_ESM.docx

Supplementary file1 Additional file 1 Collection and identification of mushroom samples, procedure of digestion and elemental analysis of mushrooms, determination of daily intakes of metal (DIM) and Health Risk Index (HRI) values, and statistical analyses. Table S1 The analytical results and recoveries for the analytes found in Tomato Leaves (NIST SRM 1573a)(DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, F., Sarikurkcu, C., Demirak, A. et al. Wild mushrooms from Ilgaz Mountain National Park (Western Black Sea, Turkey): element concentrations and their health risk assessment. Environ Sci Pollut Res 29, 31923–31942 (2022). https://doi.org/10.1007/s11356-021-18011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18011-2

Keywords

Navigation