Skip to main content
Log in

Trend analysis of anthropogenic activities affecting trace metals deposition in core sediments from the coastal and four rivers estuary of Sarawak, Malaysia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study reports the concentrations of trace metals in core sediments profile from the coastal and four rivers estuary in the Kuching Division of Sarawak, Malaysia, and the controlling mechanisms influencing their availability in sediments of the studied area. The bonding of trace metals with non-mobile fractions was confirmed with the sequential extraction. Inductively coupled plasma–optical emission spectroscopy (ICP–OES) was used to measure the concentrations of the trace metals. Granulometric analyses were performed using normalized sieve apertures to determine the textural characteristics of the sediments. Enrichment factor was used to evaluate the level of metal enrichment. Heavy metals concentrations in sediment samples varied in the range: Pb (8.9–188.9 mg/kg d.w.), Zn (19.4–431.8 mg/kg d.w.), Cd (0.014–0.061 mg/kg d.w.), Ni (6.6–33.4 mg/kg d.w.), Mn (2.4–16.8 mg/kg d.w.), Cu (9.4–133.3 mg/kg d.w.), Ba (1.3–9.9 mg/kg d.w.), As (0.4–7.9 mg/kg d.w.), Co (0.9–5.1 mg/kg d.w.), Cr (1.4–7.8 mg/kg d.w.), Mg (68.8–499.3 mg/kg d.w.), Ca (11.3–64.9 mg/kg d.w.), Al (24.7–141.7 mg/kg d.w.), Na (8.8–29.4 mg/kg d.w.), and Fe (12,011–35,124.6 mg/kg d.w.). The estimated results of the enrichment factor suggested enrichments of Pb, Zn, and Cu in all the core sediment samples and depths at all sites. The other trace metals showed no enrichments in almost all the sampled stations. Continuous accumulation of Pb, Zn, and Cu metals over a period can be detrimental to living organisms and the ecology. The results obtained from the statistical analyses suggested that the deposition of trace metals in the studied sites is due to anthropogenic inputs from the adjacent land-based sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Asare et al. 2021a)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper.

References

  • Agency for Toxic Substances and Disease Registry, ATSDR (2008) Toxicological profile for aluminum. US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Alexakis D (2011) Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environ Earth Sci 63:1369–1383

    Article  CAS  Google Scholar 

  • Alexakis D, Gamvroula D (2014) Arsenic, chromium, and other potentially toxic elements in the rocks and sediments of Oropos-Kalamos Basin, Attica, Greece. Appl Environ Soil Sci 718534:1–8

    Article  Google Scholar 

  • Alkarkhi AF, Ismail N, Ahmed A, Easa A (2009) Analysis of heavy metal concentrations in sediments of selected estuaries of Malaysia – a statistical assessment. Environ Monit Assess 153:179–185

    Article  CAS  Google Scholar 

  • Asare EA, Assim ZB, Wahi RB, Droepenu EK, Wilson F (2019a) Validation of the atomic absorption spectroscopy (AAS) for heavy metal analysis and geochemical exploration of sediment samples from the Sebangan River. Adv Anal Chem 9(2):23–33

    Google Scholar 

  • Asare EA, Assim ZB, Wahi RB, Droepenu EK, Durumin Inya NM (2019b) Geochemistry examination of surface sediments from Sadong River, Sarawak, Malaysia: Validation of ICP-OES assessment of selected heavy metals. Eurasian J Anal Chem 14(3):9–20

    CAS  Google Scholar 

  • Asare EA, Assim ZB, Wahi R (2021a) Validation of an analytical technique, distribution, and risk assessment of aliphatic and polycyclic aromatic hydrocarbons in surface sediments of the coastal and selected estuaries of Sarawak. Arab J Geosci 14:1943

    Article  CAS  Google Scholar 

  • Asare EA, Assim ZB, Wahi RB, Tahir RB, Droepenu EK (2021b) Application of fuzzy evaluation technique and grey clustering method for water quality assessment of the coastal and estuaries of selected rivers in Sarawak. Bull Natl Res Cent 45(1):1–11

    Article  Google Scholar 

  • Attia OEA, Ghrefat H (2013) Assessing heavy metal pollution in the recent bottom sediments of Mabahiss Bay, North Hurdhada, Red Sea. Egypt Environ Monit Assess 185(12):9925

    Article  CAS  Google Scholar 

  • Bale AJ, Kenny AJ (2008) Sediment analysis and seabed characterisation. In: Eleftherio A, McIntyre A (eds) Methods for the study of marine benthos. Blackwell Science Ltd, Oxford, pp 43–46

    Google Scholar 

  • Bhuyan MS, Bakar MA, Rashed-Un-Nab M, Senapathi V, Chung SY, Islam MS (2019) Monitoring and assessment of heavy metal contamination in surface water sediment of the Old Brahmaputra River, Bangladesh. Appl Water Sci 9:125

    Article  Google Scholar 

  • Bodog I, Polyak K, Csikos-Hartyaanyi Z, Hlavay J (1996) Sequential extraction procedure for the speciation of elements in fly ashes samples. Microchem J 54(3):320–330

    Article  CAS  Google Scholar 

  • Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. EPSL 42(3):399–411

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153

    Article  Google Scholar 

  • Chien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ, Han BC (2002) Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285(1–3):177–185

    Article  CAS  Google Scholar 

  • de Mora S, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 49(5–6):410–424

    Article  Google Scholar 

  • Decena SCP, Arguelles MS, Robel LL (2018) Assessing heavy metal contamination in surface sediments in an urban river in the Philippines. Pol J Environ Stud 27(5):1983–1995

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Diaz-Fierros F, Barral MT (2011) Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllons River, NW Spain). Environ Monit Assess 179:371–388

    Article  CAS  Google Scholar 

  • Dias-Ferreira C, Pato RL, Varejao JB, Tavares AO, Ferreira AJD (2016) Heavy metal and PCB spatial distribution pattern in sediments within an urban catchment – contribution of historical pollution sources. JSS 16:2594–2605

    CAS  Google Scholar 

  • Ergonul MB, Altindag A (2014) Heavy metal concentrations in the muscle tissues of seven commercial fish species from Sinop Coasts of the Black Sea. Rocznik Ochrona Srodowiska 16(1):34–51

    Google Scholar 

  • Eurachem, Middlesex (1998) The fitness for purpose of analytical methods: a laboratory guide to method validation and related.

  • Fakhradini SS, Moore F, Keshavarzi B, Lahijanzadeh A (2019) Polycyclic aromatic hydrocarbons (PAHs) in water and sediment of Hoor Al-Azim wetland, Iran: a focus on source apportionment, environmental risk assessment, and sediment-water partitioning. Environ Monit Assess 191:233

    Article  Google Scholar 

  • Farkas A, Erratico C, Vigano L (2007) Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere 68(4):761–768

    Article  CAS  Google Scholar 

  • Funk W, Dammann V, Donnevert G (2007) Quality assurance in analytical chemistry: applications in environmental, food and material analysis, biotechnology, and medical engineering. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Gao S (2019) Geomorphology and sedimentology of tidal flats. In: Perillo GME, Wolanski E, Cahoon DR (eds) CS Coastal Wetlands, 2nd edn. Elsevier, Amsterdam, pp 259–381

    Google Scholar 

  • Gholizadeh A, Taghavi M, Moslem A, Neshat AA, Lari Najafi M, Alahabadi A, Ahmadi E, Ebrahimi Aval H, Asour AA, Rezaei H, Gholami S, Miri M (2019) Ecological and health risk assessment of exposure to atmospheric heavy metals. Ecotoxicol Environ Saf 184:109622

    Article  CAS  Google Scholar 

  • Gray J (1981) The ecology of marine sediments: an introduction to the structure and function of marine sediments. Cambridge Studies in Modern Biology, Cambridge, p 2

    Google Scholar 

  • Guan Q, Wang F, Xu C, Pan N, Lin J, Zhao R, Yang Y, Luo H (2017) Source appointment of heavy metals in agricultural soil based on PMF: a case study in Hexi corridor, Northwest China. Chemosphere 193:189–197

    Article  Google Scholar 

  • Guo W, Wang Y, Shi J, Zhao X, Xie Y (2019) Sediment information on natural and anthropogenic-induced change of connected water systems in Chagan Lake, North China. Environ Geochem Health 42:795–808

    Article  Google Scholar 

  • Gupta SK, Chabukdhara M, Kumar P, Singh J, Bux F (2014) Evaluation of the ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicol Environ Saf 110:49–55

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control of sediment ecological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Hakanson L (1984) Aquatic contamination and ecological risk. An attempt at a conceptual framework. Water Res 18(9):1107–1118

    Article  Google Scholar 

  • Holme NA, McIntyre AD (1984) Methods for the study of marine benthos. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Horowitz AJ, Elrick KA (1987) The relation of stream sediment surface area, grain size, and composition to trace element chemistry. J Appl Geochem 2(4):437–451

    Article  CAS  Google Scholar 

  • Ji H, Li H, Zhang Y, Ding H, Gao Y, Xing Y (2018) Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. JSS 18:624–639

    CAS  Google Scholar 

  • Kanda A, Ncube F, Hwende T, Makumbe P (2018) Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country. Environ Geochem Health 40:2617–2633

    Article  CAS  Google Scholar 

  • Kao S-J, Shiah F-K, Wang C-H, Liu K-K (2007) Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off south western Taiwan. Cont Shelf Res 26(20):2520–2537

    Article  Google Scholar 

  • Kara M, Dumanoglu Y, Altiok H, Elbir T, Odabasi M, Bayram A (2015) Spatial variation of trace elements in seawater and sediment samples in a heavily industrialized region. Environ Earth Sci 73:405–421

    Article  CAS  Google Scholar 

  • Ke X, Gui S, Huang H, Zhang H, Wang C, Guo W (2015) Ecological risk assessment and source identification of heavy metals in surface sediments from the Liaohe River protected area, China. Chemosphere 175:473–481

    Article  Google Scholar 

  • Kowalska JB, Mazurek R, Gasiorek M, Zaleski T (2018) Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – a review. Environ Geochem Health 40(6):2395–2420

    Article  CAS  Google Scholar 

  • Li S, Zhang Q (2010) Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J Hazard Mater 176(1–3):579–588

    Article  CAS  Google Scholar 

  • Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, He X, Fang Y (2017) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ Pollut 225:681–690

    Article  CAS  Google Scholar 

  • Likuku AS, Mmolawa K, Gaboutloeloe GK (2013) Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe region, Eastern Botswana. Environ Ecol Res 1:32–40

    Article  Google Scholar 

  • Lim PE, Kiu MY (1995) Determination and speciation of heavy metals in sediments of the Juru River, Penang, Malaysia. Environ Monit Assess 35:85–89

    Article  CAS  Google Scholar 

  • Liu J, Xiang R, Chen Z, Chen M, Yan W, Zhang L, Chen H (2013) Sources, transport and deposition of surface sediments from the South China Sea. Deep Sea Res Part I Oceanogr Res Pap 71:92–102

    Article  CAS  Google Scholar 

  • Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48:616–626

    Article  CAS  Google Scholar 

  • Misa B, Darja K, Jakub K, Piotr S, Ewa B, Darinka BV (2014) Geochemical investigation of alluvial sediments: validation of ICP-OES determination of heavy metals. A case study from the Utrata River Valley (central Poland). Cent Eur J Chem 12(6):687–699

    Google Scholar 

  • Monaci F, Bargagli R (1997) Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut 100:89–98

    Article  CAS  Google Scholar 

  • Morni WZW, Ab Rahim SAK, Rumpet R, Musel J, Hassan R (2017) Checklist of gastropods from the exclusive economic zone (EEZ), Sarawak. Malaysia Trop Life Sci Res 28(1):117–129

    Article  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. J Geol 2:108–118

    Google Scholar 

  • Muller G (1979) Schwermetalle in den sediments des Rheins—Veranderungen Seitte. Umschan 78:778–783

    Google Scholar 

  • Nawrot N, Matej-Łukowicz K, Wojciechowska E (2018) Change in heavy metals concentrations in sediments deposited in retention tanks in a stream after a flood. Pol J Environ Stud 28:1–6

    Article  Google Scholar 

  • Nawrot N, Wojciechowska E, Matej-Łukowicz K, Walkusz-Miotk J, Pazdro K (2020) Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: a case study of Strzyza Stream. Environ Geochem Health 42:1469–1485

    Article  CAS  Google Scholar 

  • Nayak GN (2015) Bioavailability of metals in estuarine sediments and their possible impacts on the environment. Environ Social Sci 2:1–4

    Google Scholar 

  • Nazeer S, Hashmi MZ, Malik RN (2016) Distribution, risk assessment, and source identification of heavy metals in surface sediments of River Soan, Pakistan. Clean - Soil, Air, Water 44(9):1250–1259

    Article  CAS  Google Scholar 

  • Omorinoye AO, Assim ZB, Jusoh IB, Durumin Iya NI, Asare EA (2019) Vertical profile of heavy metal contamination in sediments from Sadong River, Sarawak, Malaysia. Indian J Environ Prot 39(11):971–978

    Google Scholar 

  • Omorinoye AO, Assim ZB, Jusoh IB, Durumin Iya NI, Bamigboye OS, Asare EA (2020) Distribution and sources of aliphatic hydrocarbons in sediments from Sadong River, Sarawak, Malaysia. Res J Chem Environ 24(6):70–77

    CAS  Google Scholar 

  • Pandey J, Singh R (2015) Heavy metals in sediments of Ganga River: up-and downstream urban influences. Appl Water Sci 7:1669–1678

    Article  Google Scholar 

  • Saleem MH, Rahman M, Kamran M, Afzal J, Armghan N, Liu L (2020) Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Environ Sci Pollut Res 27:30367–30377

    Article  CAS  Google Scholar 

  • Salomons W, Forstner U (1984) Metals in the hydrocycle. Springer, Berlin

    Book  Google Scholar 

  • Sekabira K, Oryem Origa H, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. IJEST 7:435–446

    CAS  Google Scholar 

  • Shaari H, Mohamad Azmi SNH, Sultan K, Bidai J, Mohamad Y (2015) Spatial distribution of selected heavy metals in surface sediments of the EEZ of the east coast of Peninsular Malaysia. Int J Oceanogr 2015:618074

    Article  Google Scholar 

  • Silveira A Jr, Pereira JA, Poleto C, de Lima JLMP, Goncalves FA, Alvarenga LA et al (2016) Assessment of loose and adhered urban street sediments and trace metals: a study in the city of Poc¸os de Caldas, Brazil. JSS 16:2640–2650

    CAS  Google Scholar 

  • Sim SF, Ling TY, Nyanti L, Gerunsin N, Wong YE, Kho LP (2016) Assessment of heavy metals in water, sediment, and fishes of a large tropical hydroelectric dam in Sarawak, Malaysia. J Chem 2016:8923183

    Article  Google Scholar 

  • Sim HC (2007) Urbanization in Sarawak: a context.

  • StatSoft, (1999) STATISTICA for windows. Computer Programme Manual, Tulsa

    Google Scholar 

  • Tian K, Huang B, Xing Z, Hu W (2017) Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol Indic 72:510–520

    Article  CAS  Google Scholar 

  • Tiana K, Wua Q, Liua P, Hua W, Huanga B, Shid B, Zhou Y, Kwon B, Choi K, Ryu J, Khim JS, Wang T (2020) Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ Int 136:105512

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72(2):175–192

    Article  CAS  Google Scholar 

  • United State Environmental Protection Agency, USEPA (2009) Risk-based concentration table. United States Environmental Protection Agency, Philadelphia PA

    Google Scholar 

  • United State Environmental Protection Agency, USEPA (2007). Procedure for determination of sediment particle size (grain size), 73505.

  • Wang Y, Yang L, Kong L, Liu E, Wang L, Zhu J (2015) Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA 125:200–205

    Article  CAS  Google Scholar 

  • Wang J, Liu G, Lu L, Liu H (2016) Metal distribution and bioavailability in surface sediments from the Huaihe River, Anhui. China Environ Monit Assess 188:3

    Article  Google Scholar 

  • Wang H, Sun L, Liu Z, Luo Q (2017) Spatial distribution and seasonal variations of heavy metal contamination in surface waters of Liaohe River, Northeast China. Chin Geogr Sci 27:52–62

    Article  Google Scholar 

  • Wang L, Li H, Dang J, Zhao Y, Zhu Y, Qiao P (2020) Effects of urbanization on water quality and the macrobenthos community structure in the Fenhe River, Shanxi Province, China. J Chem 2020:1–9

    Google Scholar 

  • Weissmannova HD, Pavlovsky J (2017) Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environ Monit Assess 189:616

    Article  Google Scholar 

  • Weissmannova HD, Pavlovsky J, Chovanec P (2015) Heavy metal contaminations of urban soils in Ostrava Czech Republic: assessment of metal pollution and using principal component analysis. Int J Environ Res 9(2):683–696

    Google Scholar 

  • Wen J, Yi Y, Zeng G (2016) Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J Environ Manage 178:63–69

    Article  CAS  Google Scholar 

  • Wu B (2014) Potential ecological risk of heavy metals and metalloid in the sediments of Wuyuer River basin Heilongjiang Province, China. Ecotoxicology 23:589–600

    Article  Google Scholar 

  • Xu J, Xu L, Zheng L, Liu B, Liu J, Wang X (2019) Distribution, risk assessment, and source analysis of heavy metals in sediment of rivers located in the hilly area of southern China. JSS 19:3608–3619

    CAS  Google Scholar 

  • Yang Y, Chen F, Zhang L, Liu J, Wu S, Kang M (2012) Comprehensive assessment of heavy metal contamination in the sediment of the Pearl River Estuary and adjacent shelf. Mar Pollut Bull 64(9):1947–1947

    Article  CAS  Google Scholar 

  • Yang J, Ma S, Zhou J (2018) Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye. China J Int Med Res 46(8):3374–3387

    CAS  Google Scholar 

  • Zarei I, Pourkhabbaz A, Khuzestani RB (2014) An assessment of metal contamination risk in sediments of Hara Biosphere Reserve, southern Iran with a focus on the application of pollution indicators. Environ Monit Assess 186:6047–6060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of colleagues from the Analytical Chemistry Laboratory, Faculty of Resource Science and Technology (FRST), Universiti Malaysia Sarawak.

Funding

The consumables and field trip cost of the entire research were financially supported by Universiti Malaysia Sarawak, Postgraduate Research Grant, with Grant Code: F07/PGRG/1896/2019.

Author information

Authors and Affiliations

Authors

Contributions

EAA, ZA, and RW conceived of the study and carried out the design of the experiment. EAA and ZA carried out the sample preparation and analysis; EAA, TB, and SSD assessed the data; and EAA, ZA, and RW helped to draft and edited the manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Ebenezer Aquisman Asare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by V.V.S.S. Sarma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asare, E., Assim, Z., Wahi, R. et al. Trend analysis of anthropogenic activities affecting trace metals deposition in core sediments from the coastal and four rivers estuary of Sarawak, Malaysia. Environ Sci Pollut Res 29, 16294–16310 (2022). https://doi.org/10.1007/s11356-021-17008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17008-1

Keywords

Navigation