Skip to main content
Log in

Temporal variations, regional contribution, and cluster analyses of ozone and NOx in a middle eastern megacity during summertime over 2017–2019

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Particulate matter is usually regarded as the dominant pollutant in Tehran megacity in Iran. However, the number of ozone exceedance days significantly increased in recent years. This study analyzes simultaneous measurements of O3 and NOx (NO+NO2) concentrations to improve our understanding of ozone evolution during the summers of 2017 to 2019. The k-means clustering technique was used to select five representative air quality monitoring sites in Tehran to capture O3 and NOx concentrations’ variability. The findings show that all of the investigated sites failed to meet the ozone non-attainment criterion. The ozone weekend effect is seen in the study of weekday/weekend differences in 2017 and 2018, but not in 2019, which can be due to the shift in the ozone production regime. The summer mean variation analysis can also be used to deduce this regime change. In 2017, the O3 and NO2 summer mean variations suggest a holdback in the NO2 upward trend and a reversal in the O3 downward trend that had been in place since 2012. Air mass back trajectory clustering reveals that east and north-east air mass clusters have the most significant impact on Tehran’s O3 pollution and the highest regional contribution to OX. The study of OX against NOx shows that the regional contribution to OX increased from 2017 to 2018 and then decreased in 2019; however, the local contribution is the opposite. The diurnal analysis of the regional and local contributions to OX indicated that OX in Tehran might be primarily affected by pollutants from a short distance. The findings reveal critical changes in the behavior of O3 in recent years, indicating that decision-makers in Tehran should reconsider air pollution control measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Air pollution observational data that support the findings of this study are available online from the Air Quality Control Company of Tehran Municipality website (http://airnow.tehran.ir/). The NCEP’s (National Center for Environmental Prediction) GDAS (Global Data Assimilation System) meteorological data that used to calculate air mass back trajectories in this study are available online (https://ready.arl.noaa.gov/data/archives/gdas1).

References

  • Adame JA, Notario A, Villanueva F, Albaladejo J (2012) Application of cluster analysis to surface ozone, NO2 and SO2 daily patterns in an industrial area in Central-Southern Spain measured with a DOAS system. Sci Total Environ 429:281–291. https://doi.org/10.1016/j.scitotenv.2012.04.032

    Article  CAS  Google Scholar 

  • Ahadi S, Roshani M, Shahbazi H, and Bateni Z  (2019) Ozone status report in Tehran city. Tehran Air Quality Control Company (AQCC)

  • Alizadeh-Choobari O, Bidokhti AA, Ghafarian P, Najafi MS (2016) Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmos Environ 141:443–453

    Article  CAS  Google Scholar 

  • Amini H, Taghavi-Shahri S-M, Henderson SB, Hosseini V, Hassankhany H, Naderi M, Ahadi S, Schindler C, Künzli N, Yunesian M (2016) Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran. Sci Rep 6:1–11. https://doi.org/10.1038/srep32970

    Article  CAS  Google Scholar 

  • Amini H, Hosseini V, Schindler C, Hassankhany H, Yunesian M, Henderson SB, Künzli N (2017) Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR). Environ Pollut 226:219–229. https://doi.org/10.1016/j.envpol.2017.04.027

    Article  CAS  Google Scholar 

  • An J-L, Wang Y-S, Li X, Sun Y, Shen S-H, Shi L-Q (2007) Analysis of the relationship between NO, NO2 and O3 concentrations in Beijing. Huanjing KexueEnvironmental Sci 28:706–711

    CAS  Google Scholar 

  • Anderberg MR (2014) Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks. Academic press

  • Azadeh A, Sheikhalishahi M, Saberi M, Mostaghimi MH (2013) An intelligent multivariate approach for optimum forecasting of daily ozone concentration in large metropolitans with incomplete inputs. Int J Product Qual Manag 12:209–225

    Article  Google Scholar 

  • Barzeghar V, Sarbakhsh P, Hassanvand MS, Faridi S, Gholampour A (2020) Long-term trend of ambient air PM10, PM2. 5, and O3 and their health effects in Tabriz city, Iran, during 2006–2017. Sustain Cities Soc 54:101988

    Article  Google Scholar 

  • Bayat R, Ashrafi K, Shafiepour Motlagh M, Hassanvand MS, Daroudi R, Fink G, Künzli N (2019) Health impact and related cost of ambient air pollution in Tehran. Environ Res 176:108547. https://doi.org/10.1016/j.envres.2019.108547

    Article  CAS  Google Scholar 

  • Choi Y, Souri AH (2015) Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: a view from space. Atmos Environ 106:232–240

    Article  CAS  Google Scholar 

  • Clapp LJ, Jenkin ME (2001) Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos Environ 35:6391–6405. https://doi.org/10.1016/S1352-2310(01)00378-8

    Article  CAS  Google Scholar 

  • Cleveland WS, Graedel TE, Kleiner B, Warner JL (1974) Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science 186:1037–1038. https://doi.org/10.1126/science.186.4168.1037

    Article  CAS  Google Scholar 

  • Domínguez-López D, Adame JA, Hernández-Ceballos MA, Vaca F, De la Morena BA, Bolívar JP (2014) Spatial and temporal variation of surface ozone, NO and NO2 at urban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula. Environ Monit Assess 186:5337–5351. https://doi.org/10.1007/s10661-014-3783-9

    Article  CAS  Google Scholar 

  • EPA (1998) Guideline on data handling conventions for the 8-hour ozone NAAQS.

  • Ezimand K, Kakroodi AA (2019) Prediction and spatio–temporal analysis of ozone concentration in a metropolitan area. Ecol Indic 103:589–598

    Article  Google Scholar 

  • Fard RF, Naddafi K, Yunesian M, Nodehi RN, Dehghani MH, Hassanvand MS (2016) The assessment of health impacts and external costs of natural gas-fired power plant of Qom. Environ Sci Pollut Res 23:20922–20936

    Article  Google Scholar 

  • Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, Malkawi M, Momeniha F, Gholampour A, Hassanvand MS (2018) Long-term trends and health impact of PM2. 5 and O3 in Tehran, Iran, 2006–2015. Environ Int 114:37–49

    Article  CAS  Google Scholar 

  • Gao W, Tie X, Xu J, Huang R, Mao X, Zhou G, Chang L (2017) Long-term trend of O3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Sci Total Environ 603:425–433

    Article  Google Scholar 

  • García-Yee JS, Torres-Jardón R, Barrera-Huertas H, Castro T, Peralta O, García M, Gutiérrez W, Robles M, Torres-Jaramillo JA, Ortínez-Álvarez A, Ruiz-Suárez LG (2018) Characterization of NOx-Ox relationships during daytime interchange of air masses over a mountain pass in the Mexico City megalopolis. Atmos Environ 177:100–110. https://doi.org/10.1016/j.atmosenv.2017.11.017

    Article  CAS  Google Scholar 

  • Geng F, Tie X, Xu J, Zhou G, Peng L, Gao W, Tang X, Zhao C (2008) Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmos Environ 42:6873–6883. https://doi.org/10.1016/j.atmosenv.2008.05.045

    Article  CAS  Google Scholar 

  • Givehchi R, Arhami M, Tajrishy M (2013) Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: case study of Tehran, Iran. Atmos Environ 75:287–295. https://doi.org/10.1016/j.atmosenv.2013.04.039

    Article  CAS  Google Scholar 

  • Hadei M, Yarahmadi M, Jonidi Jafari A, Farhadi M, Hashemi Nazari SS, Emam B, Namvar Z, Shahsavani A (2019) Effects of meteorological variables and holidays on the concentrations of PM10, PM2.5, O3, NO2, SO2, and CO in Tehran (2014-2018). Journal of Air Pollution and Health 4(1):1–14. https://doi.org/10.18502/japh.v4i1.599

  • Hajizadeh Y, Mokhtari M, Faraji M, Mohammadi A, Nemati S, Ghanbari R, Abdolahnejad A, Fard RF, Nikoonahad A, Jafari N, Miri M (2018) Trends of BTEX in the central urban area of Iran: a preliminary study of photochemical ozone pollution and health risk assessment. Atmospheric Pollut Res 9:220–229. https://doi.org/10.1016/j.apr.2017.09.005

    Article  CAS  Google Scholar 

  • Han S, Bian H, Feng Y, Liu A, Li X, Zeng F, Zhang X (2011) Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual Res 11:128–139. https://doi.org/10.4209/aaqr.2010.07.0055

    Article  CAS  Google Scholar 

  • Health Effects Institute (HEI) (2019) State of global air 2019. Special report., Health Effects Institute, Boston, MA

    Google Scholar 

  • Hosseini V, Shahbazi H (2016) Urban air pollution in Iran. Iran Stud 49:1029–1046. https://doi.org/10.1080/00210862.2016.1241587

    Article  Google Scholar 

  • Hosseinibalam F, Hassanzadeh S, Alizadeh R (2010) Analysis and assessment of ground-level ozone measured at two stations in Tehran. Environ Monit Assess 165:275–281

    Article  CAS  Google Scholar 

  • Hu X-M, Klein PM, Xue M, Zhang F, Doughty DC, Forkel R, Joseph E, Fuentes JD (2013) Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos Environ 70:123–130. https://doi.org/10.1016/j.atmosenv.2012.12.046

    Article  CAS  Google Scholar 

  • Karimi A, Shirmardi M, Hadei M, Birgani YT, Neisi A, Takdastan A, Goudarzi G (2019) Concentrations and health effects of short-and long-term exposure to PM2. 5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017). Ecotoxicol Environ Saf 180:542–548

    Article  CAS  Google Scholar 

  • Khanjani N, Ranadeh Kalankesh L, Mansouri F (2012) Air pollution and respiratory deaths in Kerman, Iran (from 2006 till 2010). Iran J Epidemiol 8:58–65

    Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    Article  CAS  Google Scholar 

  • Landry J-S, Neilson ET, Kurz WA, Percy KE (2013) The impact of tropospheric ozone on landscape-level merchantable biomass and ecosystem carbon in Canadian forests. Eur J For Res 132:71–81

    Article  CAS  Google Scholar 

  • Lee DS, Holland MR, Falla N (1996) The potential impact of ozone on materials in the UK. Atmos Environ 30:1053–1065

    Article  CAS  Google Scholar 

  • Lin H, Wang M, Duan Y, Fu Q, Ji W, Cui H, Jin D, Lin Y, Hu K (2020) O3 Sensitivity and contributions of different NMHC sources in O3 formation at urban and suburban sites in Shanghai. Atmosphere 11:295. https://doi.org/10.3390/atmos11030295

    Article  CAS  Google Scholar 

  • Masoudi M, Behzadi F, Sakhaei M (2014) Status and prediction of ozone as an air pollutant in Tehran, Iran. Ecol Environ Conserv 20:775–780

    Google Scholar 

  • Mavroidis I, Ilia M (2012) Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece. Atmos Environ 63:135–147. https://doi.org/10.1016/j.atmosenv.2012.09.030

    Article  CAS  Google Scholar 

  • Mazzeo NA, Venegas LE, Choren H (2005) Analysis of NO, NO2, O3 and NOx concentrations measured at a green area of Buenos Aires City during wintertime. Atmos Environ 39:3055–3068. https://doi.org/10.1016/j.atmosenv.2005.01.029

    Article  CAS  Google Scholar 

  • McKendry IG, Steyn DG, Lundgren J, Hoff RM, Strapp W, Anlauf K, Froude F, Martin JB, Banta RM, Olivier LD (1997) Elevated ozone layers and vertical down-mixing over the Lower Fraser Valley, BC. Atmos Environ 31:2135–2146. https://doi.org/10.1016/S1352-2310(96)00127-6

    Article  CAS  Google Scholar 

  • Mehdipour V, Memarianfard M (2019) Temporal prediction of tropospheric ozone considering photochemical precursors and meteorological parameters. Modares Civ Eng J 18:217–226

    Google Scholar 

  • Miri M, Derakhshan Z, Allahabadi A, Ahmadi E, Conti GO, Ferrante M, Aval HE (2016) Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach. Environ Res 151:451–457

    Article  CAS  Google Scholar 

  • Mirzaei N, Arfaeinia H, Moradi M, Mohammadi Moghadam F, Velayati A, Sharafi K (2015) The statistical analysis of seasonal and time variations on trend of important air pollutants (SO2, O3, NOx, CO, PM10)-in western Iran: a case study. Int J Pharm Technol 7:9610–9622

    CAS  Google Scholar 

  • Mohammadi A, Azhdarpoor A, Shahsavani A, Tabatabaee H (2015) Investigating the health effects of exposure to criteria pollutants using AirQ2. 2.3 in Shiraz, Iran. Aerosol Air Qual Res 16:1035–1043

    Google Scholar 

  • Naddafi K, Hassanvand MS, Yunesian M, Momeniha F, Nabizadeh R, Faridi S, Gholampour A (2012) Health impact assessment of air pollution in megacity of Tehran, Iran. Iran J Environ Health Sci Eng 9:28

    Article  Google Scholar 

  • Notario A, Bravo I, Adame JA, Díaz-de-Mera Y, Aranda A, Rodríguez A, Rodríguez D (2012) Analysis of NO, NO2, NOx, O3 and oxidant (OX=O3+NO2) levels measured in a metropolitan area in the southwest of Iberian Peninsula. Atmos Res 104–105:217–226. https://doi.org/10.1016/j.atmosres.2011.10.008

    Article  CAS  Google Scholar 

  • Ordóñez C, Mathis H, Furger M, Henne S, Hüglin C, Staehelin J, Prévôt ASH (2005) Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos Chem Phys 5:1187–1203. https://doi.org/10.5194/acp-5-1187-2005

    Article  Google Scholar 

  • Pay MT, Pérez-García Pando C, Guevara M, Jorba O, Napelenok S, Querol X (2020) Unravelling the Origin of High Ozone Concentrations in Southwestern Europe. Air Pollution Modeling and its Application XXVI ITM 2018 Springer Proceedings in Complexity Springer, Cham. https://doi.org/10.1007/978-3-030-22055-6_3

  • Pont V, Fontan J (2001) Comparison between weekend and weekday ozone concentration in large cities in France. Atmos Environ 35:1527–1535. https://doi.org/10.1016/S1352-2310(00)00308-3

    Article  CAS  Google Scholar 

  • Qin Y, Tonnesen GS, Wang Z (2004) Weekend/weekday differences of ozone, NOx, Co, VOCs, PM10 and the light scatter during ozone season in southern California. Atmos Environ 38:3069–3087. https://doi.org/10.1016/j.atmosenv.2004.01.035

    Article  CAS  Google Scholar 

  • Sadanaga Y, Sengen M, Takenaka N, Bandow H (2012) Analyses of the ozone weekend effect in Tokyo, Japan: regime of oxidant (O3 + NO2) production. Aerosol Air Qual Res 12:161–168. https://doi.org/10.4209/aaqr.2011.07.0102

    Article  CAS  Google Scholar 

  • Seinfeld JH and Pandis SN (2016) Atmospheric Chemistry and physics: from air pollution to climate change, John Wiley & Sons.

  • Shahbazi H, Reyhanian M, Hosseini V, Afshin H (2016) The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an Emission Inventory Approach. Emiss Control Sci Technol 2:44–56. https://doi.org/10.1007/s40825-015-0031-x

    Article  CAS  Google Scholar 

  • Shahbazi H, Ganjiazad R, Hosseini V, Hamedi M (2017) Investigating the influence of traffic emission reduction plans on Tehran air quality using WRF/CAMx modeling tools. Transp Res Part Transp Environ 57:484–495

    Article  Google Scholar 

  • Shamsipour M, Hassanvand MS, Gohari K, Yunesian M, Fotouhi A, Naddafi K, Sheidaei A, Faridi S, Akhlaghi AA, Rabiei K, Mehdipour P, Mahdavi M, Amini H, Farzadfar F (2019) National and sub-national exposure to ambient fine particulate matter (PM2.5) and its attributable burden of disease in Iran from 1990 to 2016. Environ Pollut 255(113173). https://doi.org/10.1016/j.envpol.2019.113173

  • Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33:1821–1845. https://doi.org/10.1016/S1352-2310(98)00345-8

    Article  CAS  Google Scholar 

  • Solberg S, Hov Ø, Søvde A, Isaksen ISA, Coddeville P, De Backer H, Forster C, Orsolini Y, Uhse K (2008) European surface ozone in the extreme summer 2003. Journal of Geophysical Research: Atmospheres, 113(D7)

  • Stevenson DS, Young PJ, Naik V, Lamarque J-F, Shindell DT, Voulgarakis A, Skeie RB, Dalsoren SB, Myhre G, Berntsen TK (2013) Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:3063–3085

    Article  Google Scholar 

  • Tang W, Zhao C, Geng F, Peng L, Zhou G, Gao W, Xu J, Tie X (2008) Study of ozone “weekend effect” in Shanghai. Sci China Ser D Earth Sci 51:1354–1360. https://doi.org/10.1007/s11430-008-0088-2

    Article  CAS  Google Scholar 

  • Tarasova OA, Brenninkmeijer CAM, Jöckel P, Zvyagintsev AM, Kuznetsov GI (2007) A climatology of surface ozone in the extra tropics: cluster analysis of observations and model results. Atmos Chem Phys 7:6099–6117. https://doi.org/10.5194/acp-7-6099-2007

    Article  CAS  Google Scholar 

  • Torbatian S, Hoshyaripour A, Shahbazi H, Hosseini V (2020) Air pollution trends in Tehran and their anthropogenic drivers. Atmospheric Pollut Res 11:429–442. https://doi.org/10.1016/j.apr.2019.11.015

    Article  CAS  Google Scholar 

  • Wang X, Li J, Zhang Y, Xie S, Tang X (2009a) Ozone source attribution during a severe photochemical smog episode in Beijing, China. Sci China Ser B Chem 52:1270–1280

    Article  CAS  Google Scholar 

  • Wang Y, Wang H, Guo H, Lyu X, Cheng H, Ling Z, Louie PK, Simpson IJ, Meinardi S, Blake DR (2017) Long-term O3–precursor relationships in Hong Kong: field observation and model simulation. Atmos Chem Phys 17:10919–10935

    Article  CAS  Google Scholar 

  • Wang YQ, Zhang XY, Draxler RR (2009b) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24:938–939. https://doi.org/10.1016/j.envsoft.2009.01.004

    Article  Google Scholar 

  • Xie M, Zhu K, Wang T, Chen P, Han Y, Li S, Zhuang B, Shu L (2016) Temporal characterization and regional contribution to O3 and NOx at an urban and a suburban site in Nanjing, China. Sci Total Environ 551–552:533–545. https://doi.org/10.1016/j.scitotenv.2016.02.047

    Article  CAS  Google Scholar 

  • Xue LK, Wang T, Gao J, Ding AJ, Zhou XH, Blake DR, Wang XF, Saunders SM, Fan SJ, and Zuo HC (2014) Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes, Atmospheric Chem. Phys., 14, 13175–13188.  https://doi.org/10.5194/acp-14-13175-2014

  • Yousefian F, Faridi S, Azimi F, Aghaei M, Shamsipour M, Yaghmaeian K, Hassanvand MS (2020) Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci Rep 10:292. https://doi.org/10.1038/s41598-019-56578-6

    Article  CAS  Google Scholar 

  • Zarandi SM, Alimohammadi M, Moghaddam VK, Hasanvand MS, Miranzadeh MB, Rabbani D, Mostafaii GR, Sarsangi V, Hajiketabi S, Tehrani AM (2015) Long-term trends of Nitrogen oxides and surface ozone concentrations in Tehran city, 2002–2011. J Environ Health Sci Eng 13:63

    Article  Google Scholar 

  • Zhang YH, Hu M, Zhong LJ, Wiedensohler A, Liu SC, Andreae MO, Wang W, Fan SJ (2008) Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): overview. Atmos Environ 42:6157–6173. https://doi.org/10.1016/j.atmosenv.2008.03.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iran Meteorological Organization (IRIMO) and the Air Quality Control Company of Tehran Municipality (AQCC) for providing observational data.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HZ collected the data, performed the analysis, and drafted the manuscript. MMN and KA supervised the work and contributed to the interpretation of the results. AP and SA provided critical feedback and helped shape the analysis and manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Masoud Montazeri Namin.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohdirad, H., Montazeri Namin, M., Ashrafi, K. et al. Temporal variations, regional contribution, and cluster analyses of ozone and NOx in a middle eastern megacity during summertime over 2017–2019. Environ Sci Pollut Res 29, 16233–16249 (2022). https://doi.org/10.1007/s11356-021-14923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14923-1

Keywords

Navigation