Skip to main content
Log in

Safe, efficient, and economically beneficial remediation of arsenic-contaminated soil: possible strategies for increasing arsenic tolerance and accumulation in non-edible economically important native plants

  • Research in Environmental Planning and Management
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anthropogenic activities, geological processes, and biogenic sources have led to the enhanced concentration of arsenic (As), a toxic metalloid in water and soil. Non-edible, economically important plants can be employed for safe As phytoremediation in addition to generating extra income. However, these plants may get affected by stressful local environmental conditions. Native plant species are adapted to local environmental conditions and hence overcome this problem. Native non-edible economic plant species which show high As tolerance and accumulation are promising candidate for safe, efficient, and economically beneficial phytoremediation of As-contaminated sites. The current review discusses the potential of native economic plant species that can be used in As phytoremediation programme. However, since their phytoremediation potential is moderate, possible strategies for increasing As  olerance and accumulation, especially genetic modification, have been discussed in detail. Knowledge gained from the review can be used for the development of As tolerance and accumulation in non-edible economic native plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alarcon-Herrera MT, Olmos-Márquez MA, Valles-Aragon C et al (2012) Assessing plants for phytoremediation of arsenic-contaminated water and soil. Eur Chem Bull 2:121–125

    Google Scholar 

  • Ali W, Isner J, Isayenkov SV et al (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Ancheta MH, Quimado MO, Tiburan CL Jr et al (2020) Copper and arsenic accumulation of Pityrogramma calomelanos, Nephrolepis biserrata, and Cynodon dactylon in Cu-and Au-mine tailings. J Degrad Min Lands Manag 7:2201–2208

    Article  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA et al (2015) Jacks of metal/metalloid chelation trade in plants—an overview. Front Plant Sci 6:192. https://doi.org/10.3389/fpls.2015.00192

    Article  Google Scholar 

  • ASTDR (2019) Agency for toxic substances and disease registry. https://www.atsdr.cdc.gov/spl/index.html, Assessed on 15 August 2020.

  • Awa SH, Hadibarata T (2020) Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollution 231:47. https://doi.org/10.1007/s11270-020-4426-0

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Genetic engineering in plants for enhancing arsenic tolerance. In: Prasad MNV (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, London, pp 463–475

    Chapter  Google Scholar 

  • Barbafieri M, Pedron F, Petruzzelli G, Rosellini I, Franchi E, Bagatin R, Vocciante M (2017) Assisted phytoremediation of a multicontaminated soil: investigation on arsenic and lead combined mobilization and removal. J Environ Manag 203:316–332

    Article  CAS  Google Scholar 

  • Barbosa ÉS, Cacique AP, de Pinho GP, Silvério FO (2020) Catharanthus roseus potential for phyto-stabilizing metals in sewage sludge. J Environ Sci Heal Part A 55:209–215

    Article  CAS  Google Scholar 

  • Basharat Z, Novo LAB, Yasmin A (2018) Genome editing weds CRISPR: what is in it for phytoremediation? Plants 7:5. https://doi.org/10.3390/plants7030051

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  • Carvalho LC, Vieira C, Abreu MM, Magalhães MCF (2019) Physiological response of Cistus salviifolius L. to high arsenic concentrations. Environ Geochem Health 42:2305–2319

    Article  Google Scholar 

  • Chapman EEV, Moore C, Campbell LM (2019) Native plants for revegetation of mercury-and arsenic-contaminated historical mining waste—can a low-dose selenium additive improve seedling growth and decrease contaminant bioaccumulation? Water, Air, Soil Pollut 230:225. https://doi.org/10.1007/s11270-019-4267-x

    Article  CAS  Google Scholar 

  • Chen Y, Xu W, Shen H et al (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47:9355–9362

    Article  CAS  Google Scholar 

  • Chen Y, Han Y-H, Cao Y et al (2017a) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268. https://doi.org/10.3389/fpls.2017.00268

    Article  Google Scholar 

  • Chen Y, Hua C-Y, Jia M-R et al (2017b) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51:10387–10395

    Article  CAS  Google Scholar 

  • Chen Y, Hua C-Y, Chen J-X, et al (2019) Expressing arsenite antiporter PvACR3;1 in rice (Oryza sativa L.) decreases inorganic arsenic content in rice grains. Environ Sci Technol 53:10062–10069

  • Cohen SM, Arnold LL, Tsuji JS (2019) Inorganic arsenic: a nongenotoxic threshold carcinogen. Curr Opin Toxicol 14:8–13

    Article  Google Scholar 

  • Čudić V, Stojiljković D, Jovović A (2016) Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Arch Ind Hyg Toxicol 67:229–239

    Google Scholar 

  • Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017) Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol 94:167–183

    Article  CAS  Google Scholar 

  • de Campos FV, de Oliveira JA, da Silva AA et al (2020) Involvement of glutathione and glutathione metabolizing enzymes in Pistia stratiotes tolerance to arsenite. Int J Phytoremediation 22:404–411

    Article  Google Scholar 

  • Deng F, Yamaji N, Ma JF et al (2018) Engineering rice with lower grain arsenic. Plant Biotechnol J 16:1691–1699

    Article  CAS  Google Scholar 

  • Deromachi Y, Uraguchi S, Kiyono M et al (2020) Stable expression of bacterial transporter ArsB attached to SNARE molecule enhances arsenic accumulation in Arabidopsis. Plant Signal Behav 15:1802553. https://doi.org/10.1080/15592324.2020.1802553

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci 103:5413–5418

    Article  CAS  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW et al (2016) A member of the phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    Article  CAS  Google Scholar 

  • Dradrach A, Karczewska A, Szopka K, Lewińska K (2020) Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. Int J Environ Res Public Health 17:3342. https://doi.org/10.3390/ijerph17093342

    Article  CAS  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S et al (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  CAS  Google Scholar 

  • Fernández YT, Diaz O, Acuna E et al (2016) Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert. Environ Monit Assess 188:235. https://doi.org/10.1007/s10661-016-5247-x

    Article  CAS  Google Scholar 

  • Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 17:1224–1236

    Article  CAS  Google Scholar 

  • Franchi E, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G, Vocciante M (2019) Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci Total Environ 655:328–336

    Article  CAS  Google Scholar 

  • Fresno T, Moreno-Jiménez E, Zornoza P, Peñalosa JM (2018) Aided phytostabilisation of As-and Cu-contaminated soils using white lupin and combined iron and organic amendments. J Environ Manage 205:142–150

  • Gabarrón M, Faz A, Martínez-Martínez S, Acosta JA (2018) Change in metals and arsenic distribution in soil and their bioavailability beside old tailing ponds. J Environ Manage 212:292–300

    Article  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  Google Scholar 

  • González H, Fernández-Fuego D, Bertrand A, González A (2019a) Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization. Environ Sci Pollut Res 26:26242–26253

    Article  Google Scholar 

  • González Á, García-Gonzalo P, Gil-Díaz MM, Alonso J, Lobo MC (2019b) Compost-assisted phytoremediation of As-polluted soil. J. Soils Sediments 19:2971–2983

    Article  Google Scholar 

  • Guarino F, Miranda A, Castiglione S, Cicatelli A (2020) Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 251:126310. https://doi.org/10.1016/j.chemosphere.2020.126310

    Article  CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199:309–313

    Article  Google Scholar 

  • Ha NTH, Ha NT, Nga TTH et al (2019) Utake of arsenic and heavy metals by native plants growing near Nui Phao multi-metal mine, northern Vietnam. Appl Geochemistry 108:104368. https://doi.org/10.1016/j.apgeochem.2019.104368

    Article  CAS  Google Scholar 

  • Hayashi S, Kuramata M, Abe T et al (2017) Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Plant J 91:840–848

    Article  CAS  Google Scholar 

  • Hayashi S, Tanikawa H, Kuramata M et al (2020) Domain exchange between Oryza sativa phytochelatin synthases reveals a region that determines responsiveness to arsenic and heavy metals. Biochem Biophys Res Commun 523:548–553

    Article  CAS  Google Scholar 

  • Hilgert J, Sura-De Jong M, Fišer J, Tupá K, Vrbová M, Griga M, Macek T, Ziarovská J (2017) The use of phosphomannose isomerase selection system for Agrobacterium-mediated transformation of tobacco and flax aimed for phytoremediation. J Environ Sci Health B 52:338–345

    Article  CAS  Google Scholar 

  • Hussain S, Akram M, Abbas G et al (2017) Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation 19:985–991

    Article  CAS  Google Scholar 

  • Indriolo E, Na G, Ellis D et al (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    Article  CAS  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985. https://doi.org/10.3389/fpls.2018.00985

    Article  Google Scholar 

  • Jha AB, Misra AN, Sharma P (2017) Phytoremediation of heavy metal-contaminated soil using bioenergy crops. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 63–96

    Chapter  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139

    Article  CAS  Google Scholar 

  • Karczewska A, Gałka B, Dradrach A et al (2017) Solubility of arsenic and its uptake by ryegrass from polluted soils amended with organic matter. J Geochemical Explor 182:193–200

    Article  CAS  Google Scholar 

  • Karimi N, Alavi M (2016) Arsenic contamination and accumulation in soil, groundwater and wild plant species from Qorveh County, Iran. Biharean Biol 10:69–73

    Google Scholar 

  • King DJ, Doronila AI, Feenstra C et al (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406:35–42

    Article  CAS  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sc 9:751. https://doi.org/10.3389/fpls.2018.00751

    Article  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J. Hazard. Mater 248:228–237

    Article  Google Scholar 

  • Kumar D, Tripathi DK, Liu S et al (2017a) Pongamia pinnata (L.) Pierre tree seedlings offer a model species for arsenic phytoremediation. Plant Gene 11:238–246

    Article  CAS  Google Scholar 

  • Kumar SR, Iyappan G, Jagadeesan H, Ramalingam S (2017b) Genomics and genetic engineering in phytoremediation of arsenic. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment. Springer, Cham, pp 171–186

    Chapter  Google Scholar 

  • Kumar K, Gupta D, Mosa KA et al (2019) Arsenic transport, metabolism, and possible mitigation strategies in plants. In: Srivastava S, Srivastava AK, Suprasanna P (eds) Plant-metal interactions. Springer, Cham, pp 141–168

    Chapter  Google Scholar 

  • Kumar A, Dubey AK, Kumar V et al (2020) Over-expression of chickpea glutaredoxin (CaGrx) provides tolerance to heavy metals by reducing metal accumulation and improved physiological and antioxidant defence system. Ecotoxicol Environ Saf 192:110252. https://doi.org/10.1016/j.ecoenv.2020.110252

    Article  CAS  Google Scholar 

  • Kumari P, Rastogi A, Shukla A et al (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 211:397–406

    Article  CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclicaromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    Article  CAS  Google Scholar 

  • LeBlanc MS, Lima A, Montello P et al (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremediation 13:657–673

    Article  CAS  Google Scholar 

  • Lee BD, Hwang S (2015) Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep 9:107–114

    Article  Google Scholar 

  • Li Y, Dhankher OP, Carreira L et al (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  Google Scholar 

  • Li X, Sun D, Feng H et al (2020) Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. J Hazard Mater 399:122895. https://doi.org/10.1016/j.jhazmat.2020.122895

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579. https://doi.org/10.1038/35078151

    Article  CAS  Google Scholar 

  • Madejon P, Maranon T, Navarro-Fernandez CM et al (2017) Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS One 12:e0180240. https://doi.org/10.1371/journal.pone.0180240

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A et al (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Martínez-Martínez S, Zornoza R, Gabarrón M et al (2019) Is aided phytostabilization a suitable technique for the remediation of tailings? Eur J Soil Sci 70:862–875

    Article  Google Scholar 

  • Mateo C, Navarro M, Navarro C, Leyva A (2019) Arsenic phytoremediation: Finally a feasible approach in the near future. In: Saldarriaga-Noreña H, Murillo-Tovar MA, Farooq R, Dongre R, Riaz S (eds) Environmental chemistry and recent pollution control approaches. IntechOpen, London

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Melo EEC, Costa ETS, Guilherme LRG et al (2009) Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J Hazard Mater 168:479–483

    Article  CAS  Google Scholar 

  • Meng X, Qin J, Wang L et al (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Esteban E, Bernal MP (2009) Feasibility of arsenic phytostabilisation using Mediterranean shrubs: impact of root mineralisation on As availability in soils. J Environ Monit 11:1375–1380

    Article  Google Scholar 

  • Mukherjee G, Saha C, Naskar N, Mukherjee A, Lahiri S, Majumder AL, Seal A (2018) An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8:6979. https://doi.org/10.1038/s41598-018-25306-x

    Article  CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359

    Article  CAS  Google Scholar 

  • Nahar N, Rahman A, Nawani NN et al (2017) Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J Plant Physiol 218:121–126

    Article  CAS  Google Scholar 

  • Navazas A, Hendrix S, Cuypers A, González A (2019) Integrative response of arsenic uptake, speciation and detoxification by Salix atrocinerea. Sci Total Environ 689:422–433

    Article  CAS  Google Scholar 

  • Nejad ZD, Kim JW, Jung MC (2017) Reclamation of arsenic contaminated soils around mining site using solidification/stabilization combined with revegetation. Geosci J. 21:385–396

    Article  CAS  Google Scholar 

  • Parvez S, Abbas G, Shahid M et al (2020) Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicol Environ Saf 187:109814. https://doi.org/10.1016/j.ecoenv.2019.109814

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75. https://doi.org/10.5194/se-5-65-2014

    Article  Google Scholar 

  • Picault N, Cazalé AC, Beyly A et al (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750

    Article  CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S et al (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    Article  CAS  Google Scholar 

  • Raza A, Khan AHA, Nawaz I et al (2019) Evaluation of arsenic-induced stress in Dahlia pinnata Cav.: morphological and physiological response. Soil Sediment Contam An Int J 28:716–728

    Article  CAS  Google Scholar 

  • Reed S, Ayala-Silva T, Dunn CB et al (2013) Nutrient uptake of ornamental plants exposed to arsenic in hydroponic solution. J Agric Sci 5:1. https://doi.org/10.5539/jas.v5n12p1

    Article  Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2010, January) Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. In: Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, vol 12, p 26 (htps://scholarworks.umass.edu/soilsproceedings/vol12/iss1/26)

  • Sarwar N, Imran M, Shaheen MR et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI et al (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 249. Springer, London, pp 71–131

    Google Scholar 

  • Shackira AM, Puthur JT (2019) Phytostabilization of heavy metals: understanding of principles and practices. In: Srivastava S, Srivastava AK, Suprasanna P (eds) Plant-metal interactions. Springer, Cham, pp 263–282

    Chapter  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2014) Arsenic toxicity and tolerance mechanisms in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC Press, Taylor and Francis Publishing Company, Florida, pp 733–782

    Google Scholar 

  • Sharma P, Srivastava V, Kumar A et al (2018) Mechanisms of metalloid uptake, transport, toxicity, and tolerance in plants. In: Abbas Z, Tiwari AK, Kumar P (eds) Emerging trends of plant physiology for sustainable crop production. Apple Academic Press, Oakville, pp 167–221

    Chapter  Google Scholar 

  • Shi S, Wang T, Chen Z et al (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719

    Article  CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S et al (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784. https://doi.org/10.1038/srep05784

    Article  CAS  Google Scholar 

  • Shukla D, Kesari R, Mishra S et al (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  CAS  Google Scholar 

  • Singh R, Jha AB, Misra AN, Sharma P (2019a) Differential responses of growth, photosynthesis, oxidative stress, metals accumulation and NRAMP genes in contrasting Ricinus communis genotypes under arsenic stress. Environ Sci Pollut Res 26:31166–31177

    Article  CAS  Google Scholar 

  • Singh R, Jha AB, Misra AN, Sharma P (2019b) Adaption mechanisms in plants under heavy metal stress conditions during phytoremediation. In: Pandey V, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, Netherlands, pp 329–360

    Chapter  Google Scholar 

  • Singh R, Misra AN, Sharma P (2020) Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis. Protoplasma 258:391–401

    Article  Google Scholar 

  • Singh R, Misra AN, Sharma P (2021) Effect of arsenate toxicity on antioxidant enzymes and expression of nicotianamine synthase in contrasting genotypes of bioenergy crop Ricinus communis. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12701-7

  • Srivastava S, Mishra S, Tripathi RD et al (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (Lf) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2010) Comparative antioxidant profiling of tolerant and sensitive varieties of Brassica juncea L. to arsenate and arsenite exposure. Bull Environ Contam Toxicol 84:342–346

    Article  CAS  Google Scholar 

  • Sukla A, Srivastava S (2019) A review of phytoremediation prospects for arsenic contaminated water and soil. In: Pandey V, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 243–254

    Chapter  Google Scholar 

  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858

    Article  CAS  Google Scholar 

  • Sylvain B, Mikael M-H, Florie M et al (2016) Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 136:44–52

    Article  CAS  Google Scholar 

  • Tiwari S, Sarangi BK (2019) Transgenics for arsenic and chromium phytoremediation. In: Prasad MNV (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, London, pp 167–185

    Chapter  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S et al (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  Google Scholar 

  • Uraguchi S, Tanaka N, Hofmann C et al (2017) Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. Plant Cell Physiol 58:1730–1742

    Article  CAS  Google Scholar 

  • Vazquez-Nunez E, Pena-Castro JM, Fernandez-Luqueno F, Cejudo E, Maria G, Garcia-Castaneda MC (2018) A review on genetically modified plants designed to phytoremediate polluted soils: biochemical responses and international regulation. Pedosphere 28:697–712

    Article  Google Scholar 

  • Verma PK, Verma S, Pande V et al (2016a) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740. https://doi.org/10.3389/fpls.2016.00740

    Article  Google Scholar 

  • Verma S, Verma PK, Pande V et al (2016b) Transgenic Arabidopsis thaliana expressing fungal arsenic methyltransferase gene (WaarsM) showed enhanced arsenic tolerance via volatilization. Environ Exp Bot 132:113–120

    Article  CAS  Google Scholar 

  • Verma S, Verma PK, Meher AK et al (2018) A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in transgenic rice (Oryza sativa L.). J Hazard Mater 344:626–634

    Article  CAS  Google Scholar 

  • Verma PK, Verma S, Tripathi RD, Chakrabarty D (2020) A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance. Ecotoxicol Environ Saf 195:110471. https://doi.org/10.1016/j.ecoenv.2020.110471

    Article  CAS  Google Scholar 

  • Wang C, Na G, Bermejo ES et al (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206–218

    Article  Google Scholar 

  • Wojas S, Clemens S, SkŁodowska A, Antosiewicz DM (2010) Arsenic response of AtPCS1 and CePCS expressing plants–effects of external As (V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  Google Scholar 

  • Xu J, Shi S, Wang L et al (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215:1090–1101

    Article  CAS  Google Scholar 

  • Yamazaki S, Ueda Y, Mukai A et al (2018) Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance. Plant Direct 2:e00034. https://doi.org/10.1002/pld3.34

    Article  CAS  Google Scholar 

  • Yan H, Gao Y, Wu L et al (2019) Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. J Hazard Mater 368:386–396

    Article  CAS  Google Scholar 

  • Yang J, Gao M, Hu H et al (2016) OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211:658–670

    Article  CAS  Google Scholar 

  • Yanitch A, Brereton NJ, Gonzalez E, et al (2017) Transcriptomic response of purple willow (Salix purpurea) to arsenic stress. Front Plant Sci 8:1115. https://doi.org/10.3389/fpls.2017.01115

  • Zanella L, Fattorini L, Brunetti P et al (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622

    Article  CAS  Google Scholar 

  • Zhang J, Martinoia E, Lee Y (2018) Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant Cell Physiol 59:1317–1325

    CAS  Google Scholar 

Download references

Acknowledgements

RS is thankful for UGC-JRF fellowship during the period of this work.

Availability of data and materials

Not applicable

Funding

This study received funding from DST-SERB project (ECR/2016/000888) and UGC Start-up grant (F.4-5(107-FRP)/2014 (BSR). Department of Biotechnology Builder project no. BT/PR9028/INF/22/193/2013 supported this work.

Author information

Authors and Affiliations

Authors

Contributions

PS contributed to the conception and design of the article. RS wrote the manuscript. PS and ANM revised it critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pallavi Sharma.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Misra, A.N. & Sharma, P. Safe, efficient, and economically beneficial remediation of arsenic-contaminated soil: possible strategies for increasing arsenic tolerance and accumulation in non-edible economically important native plants. Environ Sci Pollut Res 28, 64113–64129 (2021). https://doi.org/10.1007/s11356-021-14507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14507-z

Keywords

Navigation