Skip to main content
Log in

Behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in/on pomegranate tissues

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pomegranate crop is affected by several insect pests and requires usage of a large number of pesticides, but the information on their behavior in pomegranate tissues is limited. A study was conducted to assess the behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in pomegranate fruits and leaves. The QuEChERS analytical method and LC-MS/MS and GC-MS were used for quantification of the analytes. The LOD (limit of detection) of acetamiprid, azoxystrobin, and pyraclostrobin was 0.0015 mg kg−1 and lambda-cyhalothrin was 0.003 mg kg−1. The respective LOQ (limit of quantification) was 0.005 and 0.01 mg kg−1. The dissipation of the analytes best fitted into first-order rate kinetics and the half-lives of the chemicals in pomegranate fruits were 9.2–13 days and in the leaves were 13.5–17 days. In the pomegranate aril, the residue levels of acetamiprid, lambda-cyhalothrin, and pyraclostrobin were always < LOQ of these chemicals. Azoxystrobin was detected in pomegranate aril, and its residue was highest at 0.04 mg kg−1 on the 10th day and reached < LOQ by the 25th day. The pre-harvest interval (PHI) required for acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin at standard-dose treatment was 50, 58, 44, and 40 days, respectively. From double-dose treatment, the PHIs were 70, 75, 58, and 54 days, respectively. The pesticides used in this study were more persistent in the pomegranate leaves compared to the fruits. The outcome of this study can be incorporated into production of pomegranate fruits safe for consumption and to meet the domestic and export quality control requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd-Ella AA (2015) Effect of several insecticides on pomegranate aphid, Aphis punicae (Passerini) (Homoptera: Aphididae) and its predators under field conditions. OEPP/EPPO Bull 45:90–98. https://doi.org/10.1111/epp.12192

    Article  Google Scholar 

  • Akem C, Opina O, Dalisay T, Esguerra E, Ugay V, Palacio M, Juruena M, Fueconcillo G, Sagolili J (2013) Integrated disease management of stem end rot of mango in the Southern Philippines. ACIAR Proceedings Series (139). pp. 104-110. ISSN 0816-4266

  • Alam SKF, Patra B, Samanta A (2019) Evaluation of some new insecticide mixtures for management of litchi fruit borer. J Entomol Zool Stud 7(1):1541–1546

    Google Scholar 

  • Alister C, Araya M, Becerra K, Volosky C, Saavedra J, Kogan M (2018) Industrial prune processing and its effect on pesticide residue concentrations. Food Chem 268:264–270

    CAS  Google Scholar 

  • Bakirci GT, YamanAcay DB, Bakirci F, Otleş S (2014) Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem 160:379–392

    CAS  Google Scholar 

  • Badii KB, Bae A, Sowley ENK (2013) Efficacy of some lambda-cyhalothrin-based insecticides in control of major field pests of cowpea (Vigna Unguiculata L.). Int J Sci Technol Res 2(4):76–81

    Google Scholar 

  • Bian Y, Guo G, Liu F, Chen X, Wang Z, Hou T (2020) Meptyl dinocap and azoxystrobin residue behaviors in different ecosystems under open field conditions and distribution on processed cucumber. J Sci Food Agric 100(2):447–452

    Google Scholar 

  • Buchholz A, Nauen R (2002) Translocation and translaminar bioavailability of two neonicotinoid insecticides after foliar application to cabbage and cotton. Pest Manag Sci 58(1):10–16

    CAS  Google Scholar 

  • Chen X, He S, Gao Y, Ma Y, Hu J, Liu X (2019) Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique. Food Chem 274:291–297

    CAS  Google Scholar 

  • Clasen B, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743

    CAS  Google Scholar 

  • Craddock HA, Huang D, Turner PC, Quiros-Alcala L, Payne-Sturges DC (2010) Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015. Environ Health 18(1):7

    Google Scholar 

  • Cui F, Chai T, Liu X, Wang C (2017) Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna. Environ Toxicol Chem 36:182–189

    CAS  Google Scholar 

  • de Oliveira LAB, Pacheco HP, Scherer R (2016) Flutriafol and pyraclostrobin residues in Brazilian green coffees. Food Chem 190:60–63

    Google Scholar 

  • Djouaka R, Soglo MF, Kusimo MO, Adeoti R, Talom A, Zeukeng F, Paraiso A, Victor Afari-Sefa V, May-GuriSaethre MG, Manyong V, Tamo M, Waage J, Lines J, Maluku G (2018) The rapid degradation of lambda-cyhalothrin makes treated vegetables relatively safe for consumption. Int J Environ Res Public Health 15(7):1536

    Google Scholar 

  • Du B, Zhang Z, Liu W, Ye Y, Lu T, Zhou Z, Li Y, Fu Z, Qian H (2019) Acute toxicity of the fungicide azoxystrobin on the diatom Phaeodactylum tricornutum. Ecotoxicol Environ Saf 168:72–79

    CAS  Google Scholar 

  • Elgueta S, Moyano S, Sepulveda P, Quiroz C, Correa A (2017) Pesticide residues in leafy vegetables and human health risk assessment in North Central agricultural areas of Chile. Food Addit Contam Part B 10(2):105–112

    CAS  Google Scholar 

  • Ernst F, Alonso B, Colazzo M, Pareja L, Cesio V, Pereira A, Marquez A, Errico E, Segura AM, Heinzen H, Perez-Parada A (2018) Occurrence of pesticide residues in fish from South American rainfed agroecosystems. Sci Total Environ 631-632:169–179

    CAS  Google Scholar 

  • Fan S, Zhang F, Deng K, Yu C, Liu S, Zhao P, Pan C (2013) Spinach or amaranth contains highest residue of metalaxyl, fluazifop-P-butyl, chlorpyrifos, and lambda-cyhalothrin on six leaf vegetables upon open field application. J Agric Food Chem 61(9):2039–2044

    CAS  Google Scholar 

  • Farha W, Abd El-Aty AM, Rahman MM, Chung HS, Lee HS, Jeon JS, Wang J, Chang BJ, Shin HC, Shim JH (2018) Dynamic residual pattern of azoxystrobin in Swiss chard with contribution to safety evaluation. Biomed Chromatogr 32(2):10

    Google Scholar 

  • Gao YY, Li XX, He LF, Li BX, Mu W, Liu F (2020) Effect of application rate and timing on residual efficacy of pyraclostrobin in the control of pepper anthracnose. Plant Dis 104:958–966. https://doi.org/10.1094/PDIS-03-19-0435-RE

    Article  CAS  Google Scholar 

  • Guedegba NL, ImorouToko I, Agbohessi PT, Zoumenou B, Douny C, Mandiki SNM, Schiffers B, Scippo ML, Kestemont P (2019) Comparative acute toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on Nile Tilapia (Oreochromis Niloticus) juveniles. J Environ Sci Health B 54(7):580–589

    CAS  Google Scholar 

  • Gullino ML, Gilardi G, Garibaldi A (2009) Chemical control of downy mildew on lettuce and basil under greenhouse. Commun Agric Appl Biol Sci 74(3):933–940

    CAS  Google Scholar 

  • He LM, Troiano J, Wang A, Goh K (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev Environ Contam Toxicol 95:71–91

    Google Scholar 

  • Holland J, Sinclair P (2004) In Pesticide residues in food and drinking water human exposure and risks, edited by Hamilton D and Crossley S (John Wiley & Sons Ltd, England, 2004)

  • Jacobsen RE, Fantke P, Trapp S (2015) Analysing half-lives for pesticide dissipation in plants. SAR QSAR Environ Res 26(4):325–342

    CAS  Google Scholar 

  • Khan I, Khan SA, Hussain S, Maula F, Shah HI, Iqbal T, Khan A (2017) To study the infestation level and effective chemical control of pomegranate fruit borer (Virachola isocrates). J Entomol Zool Stud 5(1):282–284

    Google Scholar 

  • Lampe U, Hamdi J, Welday A, Bihl S, Krause JP (2017) Pesticide residue distribution in strawberries: a methodological approach. Food Qual Saf (23 October 2017).

  • Lansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109(2):177–206

    CAS  Google Scholar 

  • Lentza-Rizos C, Avramides EJ, Kokkinaki K (2006) Residues of azoxystrobin from grapes to raisins. J Agric Food Chem 54(1):138–141

    CAS  Google Scholar 

  • Lewis K, Tzilivakis J (2017) Development of a data set of pesticide dissipation rates in/on various plant matrices for the pesticide properties database (PPDB). Data 2:28. https://doi.org/10.3390/data2030028

    Article  Google Scholar 

  • Li D, Liu M, Yang Y, Shi H, Zhou J, He D (2016) Strong lethality and tetragenicity of strobilurins on Xenopus Tropicalis embryos: basing on ten agricultural fungicides. Environ Pollut 208:868–874

    CAS  Google Scholar 

  • Li H, Cao F, Zhao F, Yang Y, Teng M, Wang C, Qiu L (2018) Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebra fish embryos. Chemosphere 207:781–790

    CAS  Google Scholar 

  • Liu X, Yang Y, Chen Y, Zhang Q, Lu P, Hu D (2019) Dissipation, residues and risk assessment of oxine-copper and pyraclostrobin in citrus. Food Addit Contam Part A 36(10):1538–1550

    CAS  Google Scholar 

  • Liu Y, Zhang H, He F, Li X, Tan H, Zeng D (2018) Combined toxicity of chlorantraniliprole, lambda-cyhalothrin and imidacloprid to the silkworm Bombyxmori (Lepidoptera: Bombycidae). Environ Sci Pollut Res 25:22589–22605

    Google Scholar 

  • Lu MX, Jiang WW, Wang JL, JianQ SY, Liu XJ, Xiang-Yang Y (2014) Persistence and dissipation of chlorpyrifos in Brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLoS One 9(6):e100556

    Google Scholar 

  • Lu T, Zhu Y, Xu J, Ke M, Zhang M, Tan C, Fu Z, Qian H (2018) Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chorella pyrenoidosa. Environ Pollut 234:379–388

    CAS  Google Scholar 

  • Martinez MA, Ares I, Rodriguez JL, Martinez M, Roura-Martinez D, Castellano V, Lopez-Torres B, Martinez-Larrañaga MR, Anadon A (2018) Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats. Sci Total Environ 631-632:1371–1382

    CAS  Google Scholar 

  • Matadha NY, Mohapatra S, Siddamallaiah L, Udupi VR, Gadigeppa S, Raja DP, Donagar SP, Hebbar SS (2020) Persistence and dissipation of fluopyram and tebuconazole on bell pepper and soil under different environmental conditions. Int J Environ Anal Chem 26:6077–6086

    Google Scholar 

  • Mohapatra S (2014) Residue dynamics of chlorpyrifos and cypermethrin in/on pomegranate (Punica granatum L.) fruits and soil. Int J Environ Anal Chem 94:1394–1406

    CAS  Google Scholar 

  • Mohapatra S (2015) Dynamics of difenoconazole and propiconazole residues on pomegranate over a period of two years under field conditions. Environ Sci Pollut Res 188:1–12

    Google Scholar 

  • Mohapatra S, Lekha S (2016) Residue level and dissipation of carbendazim in/on pomegranate fruits and soil. Environ Monit Assess 188(7):406

    Google Scholar 

  • Mohapatra S, Siddamallaiah L, Matadha NY, Udupi VR, Raj DP, Gadigeppa S (2019) Dissipation of neonicotinoid insecticides imidacloprid, indoxacarb and thiamethoxam on pomegranate (Punica granatum L.). Ecotoxicol Environ Saf 171:130–137

    CAS  Google Scholar 

  • Mondal SN, Vicent A, Reis RF, Timmer LW (2007) Efficacy of pre- and post-inoculation application of fungicides to expanding young citrus leaves for control of melanose, scab, and Alternaria brown spot. Plant Dis 91(12):1600–1606

    CAS  Google Scholar 

  • Park DW, Kim KG, Choi EA, Kang GR, Kim TS, Yang YS, Moon SJ, Ha DR, Kim ES, Cho BS (2016) Pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea: a long-term study on safety and health risk assessment. Food Addit Contam Part A 33(1):105–118

    CAS  Google Scholar 

  • Patel MB, Nath A, Mayani JM (2018) A study on physical properties of pomegranate (Punica granatum L. Punicaceae) fruits. Int J Chem Stud 6(5):1460–1463

    CAS  Google Scholar 

  • Patra B, Alam SK, Samanta A, Chatterjee M (2015) Bioefficacy of lambda-cyhalothrin 4.9 C against chilli thrips and fruit borer. Bioscan 10(3):1367–1370

    CAS  Google Scholar 

  • Pico Y, El-Sheikh MA, Alfarhan AH, Barcelo D (2018) Target vs non-target analysis to determine pesticide residues in fruits from Saudi Arabia and influence in potential risk associated with exposure. Food Chem Toxicol 111:53–63

    CAS  Google Scholar 

  • Rajeshwari G, Reddy NA, Chakravarthy AK, Sridhar V, Murthy BNS (2019) Bio-efficacy of biorational insecticides against thrips and aphids on pomegranate and their safety to natural enemies. J Entomol Zool Stud 7(3):1141–1144

    Google Scholar 

  • Richard P. Pohanish (2015) In Sittig’s handbook of pesticides and agricultural chemicals 2nd edn.

  • Renaud M, Akeju T, Natal-da-Luz T, Leston S, Rosa J, Ramos F, Sousa JP, Azevedo-Pereira HMVS (2018) Effects of the neonicotinoids acetamiprid and thiacloprid in their commercial formulations on soil fauna. Chemosphere 194:85–93

    CAS  Google Scholar 

  • Rodrigues ET, Lopes I, Pardal MA (2013) Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review. Environ Int 53:18–28

    CAS  Google Scholar 

  • Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees-a risk assessment. PLoS One 9(4):e94482

    Google Scholar 

  • SANTE (2019) Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed, SANTE/12682/2019

  • Saxena A, Sharma BK, Singh HB (2016) Effect of azoxystrobin based fungicides in management of chilli and tomato diseases. Proc National Acad Sci India 86:283–289

    CAS  Google Scholar 

  • Schirra M, Palma A, Barberis A, Angioni A, Garau VL, Cabras P, D’Aquino S (2010) Post infection activity, residue levels, and persistence of azoxystrobin, fludioxonil, and pyrimethanil applied alone or in combination with heat and imazalil for green mold control on inoculated oranges. J Agric Food Chem 58(6):3661–3666

    CAS  Google Scholar 

  • Slowik-Borowiec M (2016) Dissipation kinetics of alpha-cypermethrin and lambda-cyhalothrin residues in aboveground part of white mustard (Sinapisalba L.). J Environ Sci Health B 51(9):628–633

    CAS  Google Scholar 

  • Slowik-Borowiec M, Szpyrka E, Rupar J, Podbielska M, Matyaszek A (2016) Occurrence of pesticide residues in fruiting vegetables from production farms in south-eastern region of Poland. Rocz Panstw Zakl Hig 67(4):359–365

    Google Scholar 

  • Siddamallaiah L, Mohapatra S, Buddidathi R, Hebbar SS (2017) Dissipation of spiromesifen and spiromesifen-enol on tomato fruit, tomato leaf, and soil under field and controlled environmental conditions. Environ Sci Pollut Res 24:23559–22357

    CAS  Google Scholar 

  • Soto-Estrada A, Forster H, Hasey J, Adaskaveg JE (2003) New fungicides and application strategies based on inoculum and precipitation for managing stone fruit rust on peach in California. Plant Dis 87(9):1094–1101

    CAS  Google Scholar 

  • Sungur S, Tunur C (2012) Investigation of pesticide residues in vegetables and fruits grown in various regions of Hatay, Turkey. Food Addit Contam Part B 5(4):265–267

    CAS  Google Scholar 

  • Thomson WT (1997) Agricultural chemicals book IV: fungicides, 12th edn. Thomson Publications, Fresno

    Google Scholar 

  • Tuttle AH, Salazar G, Cooper EM, Stapleton HM, Zylka MJ (2019) Choice of vehicle affects pyraclostrobin toxicity in mice. Chemosphere 218:501–506

    CAS  Google Scholar 

  • U.S. EPA (2015) Guidance to calculate representative half-life values and characterizing pesticide degradation. Available at https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-calculate-representative-half-life-values. Accessed 1 June 2020

  • Utture SC, Banerjee K, Dasgupta S, Patil SH, Jadhav MR, Wagh SS, Kolekar SS, Anuse MA, Adsule PG (2011) Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits. J Agric Food Chem 59(14):7866–7873

    CAS  Google Scholar 

  • Wang W, Cai DJ, Shan ZJ, Chen WL, Poletika N, Gao XW (2007) Comparison of the acute toxicity for gamma-cyhalothrin and lambda-cyhalothrin to zebra fish and shrimp. Regul Toxicol Pharmacol 47(2):184–188

    CAS  Google Scholar 

  • Wang H, Li F, Qu J, Mao T, Chen J, Li M, Lu Z, Fang Y, Shi G, Li B (2019) The mechanism of damage by trace amounts of acetamiprid to the midgut of the silkworm, Bombyxmori. Environ Toxicol 34(9):1043–1051

    Google Scholar 

  • Wu J, Wang K, Zhang H (2012) Dissipation and residue of acetamiprid in watermelon and soil in the open field. Bull Environ Contam Toxicol 89(3):644–648

    CAS  Google Scholar 

  • Wu S, Lei L, Liu M, Song Y, Lu S, Li D, Shi H, Raley-Susman KM, He D (2018) Single and mixture toxicity of strobilurin and SDHI fungicides to Xenopus tropicalis embryo. Ecotoxicol Environ Saf 153:8–15

    CAS  Google Scholar 

  • Xue J, Li H, Liu F, Xue J, Chen X, Zhan J (2014) Transfer of difenoconazole and azoxystrobin residues from chrysanthemum flower tea to its infusion. Food Addit Contam Part A 31(4):666–675

    CAS  Google Scholar 

  • Yang M, Zhang J, Zhang J, Rashid M, Zhong G, Liu J (2018) The control effect of fungicide pyraclostrobin against freckle disease of banana and its residue dynamics under field conditions. J Environ Sci Health B 53(9):615–621

    CAS  Google Scholar 

  • Yeter O, Aydın A (2020) The fate of acetamiprid and its degradation during long-term storage of honey. Food Addit Contam Part A 37(2):288–303

    CAS  Google Scholar 

  • Zhang C, Wang J, Zhang S, Zhu L, Du Z, Wang J (2017) Acute and subchronic toxicity of pyraclostrobin in zebrafish (Daniorerio). Chemosphere 188:510–516

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Director ICAR-IIHR for providing the facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

Soudamini Mohapatra—conceptualization of the study, field study, data analysis, and manuscript preparation

Lekha Siddamallaiah—sample preparation, method validation, and instrumental analysis

Nagapooja Yogendraiah Matadha—sample preparation, method validation, and instrumental analysis

Corresponding author

Correspondence to Soudamini Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S., Siddamallaiah, L. & Matadha, N.Y. Behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in/on pomegranate tissues. Environ Sci Pollut Res 28, 27481–27492 (2021). https://doi.org/10.1007/s11356-021-12490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12490-z

Keywords

Navigation