Skip to main content
Log in

Physiological and morphoanatomical effects of glyphosate in Eugenia uniflora, a Brazilian plant species native to the Atlantic Forest biome

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The herbicide glyphosate can cause severe ecotoxicological effects on non-target organisms. Eugenia uniflora L. (Myrtaceae) is very important for in situ environmental biomonitoring due to its wide distribution in the Atlantic Forest biome. Thus, this study aimed to evaluate the response of E. uniflora leaves to glyphosate. Eight-month-old plants were exposed to an aerial application of the herbicide at concentrations of 0, 144, 432, 864, and 1440 g a. e. ha−1 (grams of acid equivalent per hectare). Evaluations were performed on the 12th day after the glyphosate application (DAA). An accumulation of shikimic acid in the leaves of E. uniflora was observed. Glyphosate altered the photosynthetic parameters of the treated plants, with a drastic decrease in the photosynthetic rate, stomatal conductance, transpiration, and pigment content. There was an increase in Ci/Ca, lipid peroxidation, and electrolyte extravasation levels. Glyphosate also promoted ultrastructural, anatomical and visible damage to the E. uniflora leaves. Our findings indicate that glyphosate is phytotoxic to the native species E. uniflora at the tested doses. The presence of visible damage suggests that E. uniflora has remarkable potential as a bioindicator of glyphosate in the environment, making it a possible species for future biomonitoring projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SG, Bahk JD, Lee BH (2008) Glyphosate induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46:1062–1070

    Article  CAS  Google Scholar 

  • Alves ES, Tresmondi F, Longui EL (2008) Análise estrutural de folhas de Eugenia uniflora L.(Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Bot Bras 22:241–248

    Article  Google Scholar 

  • Alves ES, Moura BB, Pedroso ANV, Tresmondi F, Machado SR (2016) Cellular markers indicative of ozone stress on bioindicator plants growing in a tropical environment. Ecol Indic 67:417–424

    Article  CAS  Google Scholar 

  • Assis AD, Pereira OJ, Thomaz LD (2004) Fitossociologia de uma floresta de restinga no Parque Estadual Paulo César Vinha, Setiba, município de Guarapari (ES). Rev Bras Bot 27:349–361

    Article  Google Scholar 

  • Batista PF, Costa AC, Megguer CA, Lima JS, Silva FB, Guimarães DS, Nascimento KJT (2018) Pouteria torta: a native species of the Brazilian Cerrado as a bioindicator of glyphosate action. Braz J Biol 78:296–305

    Article  CAS  Google Scholar 

  • Beltrano J, Ruscitti M, Arango C, Ronco M (2013) Changes in the accumulation of shikimic acid in mycorrhized Capsicum annum grown with application of glyphosate and phosphorus. Theor Exp Plant Physiol 25:125–136

    Article  CAS  Google Scholar 

  • Bourguet D, Guillemaud T (2016) The hidden and external costs of pesticide use. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer International Publishing, Switzerland, pp 35–120

    Chapter  Google Scholar 

  • Boutin C (2014) Herbicides: non-target species effect. In: Jorgensen SE (ed) Encyclopedia of Environmental Management, II edn. Taylor and Francis, New York, pp 1406–1417

    Google Scholar 

  • Braz DM, Lima Jacques E, Somner GV, Silva Sylvestre L, Rosa MMT, Pereira-Moura MVL, Filho PG, Couto AVS, Amorim TA (2013) Restinga de Praia das Neves, ES, Brasil: caracterização fitofisionômica, florística e conservação. Biota Neotropica 13:315–331

    Article  Google Scholar 

  • Cakmak I, Yazici A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non Glyphosate resistant soybean. Eur J Agron 31:114–119

    Article  CAS  Google Scholar 

  • Christofoletti JC (1999) Considerações sobre tecnologia de aplicação nas pulverizações agrícolas e seu controle. São Paulo: Teejet South America, 15p. In: Costa AGF, Velini ED, Negrisoli E, Carbonari CA, Rossi CVS, Corrêa MR, Silva FML (2007) Efeito da intensidade do vento, da pressão e de pontas de pulverização na deriva de aplicações de herbicidas em pré-emergência. Planta Daninha. 25:203-210.

  • Corpas FJ, Barroso JB (2014) NADPH generating dehydrogenases: their role in the mechanism of protection against nitro oxidative stress induced by adverse environmental conditions. Front Environ Sci 2:1–5

    Article  Google Scholar 

  • Costa GA, Tuffi-Santos LD, Santos SA, Cruz LR, Sant Anna-Santos BF, Santos IT (2020) Efficiency of glyphosate and carfentrazone-ethyl in the control of Macroptilium atropurpureum (DC.) Urb. under different light intensities. S Afr J Bot 131:302–309

    Article  CAS  Google Scholar 

  • Cruz-Hipolito H, Osuna MD, Heredia A, Ruiz-Santaella JP, De Prado R (2009) Non target mechanism involved in glyphosate tolerance found in Canavalia ensiformis plants. J Agric Food Chem 57:4844–4848

    Article  CAS  Google Scholar 

  • Cuhra M, Bøhn T, Cuhra P (2016) Glyphosate: too much of a good thing? Front Environ Sci 4:28

    Article  Google Scholar 

  • Domingos M, Bulbovas P, Camargo ZSC (2015) Searching for native tree species and respective potential biomarkers for future assessment of pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Environ Pollut 202:85–95

    Article  CAS  Google Scholar 

  • Dupont YL, Strandberg B, Damgaard C (2018) Effects of herbicide and nitrogen fertilizer on non-target plant reproduction and indirect effects on pollination in Tanacetum vulgare (Asteraceae). Agric Ecosyst Environ 262:76–82

    Article  CAS  Google Scholar 

  • Florencia FM, Carolina T, Enzo B, Leonrdo G (2017) Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina). Ecotoxicol Environ Saf 144:360–368

    Article  CAS  Google Scholar 

  • Foloni LL, Rodrigues D, Ferreira F, Miranda R, Ono EO (2005) Aplicação de glifosato em pós-emergência, em soja transgênica cultivada no Cerrado. Revista Brasileira de Herbicidas 3:47–58

    Article  Google Scholar 

  • Foresti ER, Nepomuceno MP, Alves PLCA (2015) Simulação da deriva de clomazone e glyphosate em mudas de laranjeira ‘Hamlin.’ Revista Brasileira de Fruticultura 37:367–376

  • Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ (2017) Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. J Plant Physiol 218:196–205

    Article  Google Scholar 

  • Freitas-Silva L, Araújo TO, Nunes-Nesi A, Ribeiro C, Costa AC, Silva LC (2020) Evaluation of morphological and metabolic responses to glyphosate exposure in two neotropical plant species. Ecol Indic 113:106246

    Article  Google Scholar 

  • Fuchs MA, Geiger DR, Reynolds TL, Bourque JE (2002) Mechanisms of glyphosate toxicity in velvetleaf (Abutilon theophrasti Medikus). Pestic Biochem Physiol 74:27–39

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Gomes MP, Juneau P (2016) Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: is the mitochondrial electron transport chain a target of this herbicide? Environ Pollut 218:402–409

    Article  CAS  Google Scholar 

  • Gomes MP, Le Manac’h SG, Maccario S, Labrecque M, Lucotte M, Juneau P (2016a) Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic Biochem Physiol 130:65–70

    Article  CAS  Google Scholar 

  • Gomes MP, Le Manac’h SG, Moingt M, Smedbol E, Paquet S, Labrecque M (2016b) Impact of phosphate on glyphosate uptake and toxicity in willow. J Hazard Mater 304:269–279

    Article  CAS  Google Scholar 

  • Gomes MP, Le Manac’h SG, Hénault-Ethier L, Labrecque M, Lucotte M, Juneau P (2017) Glyphosate-dependent inhibition of photosynthesis in willow. Front Plant Sci 8:207

    Article  Google Scholar 

  • Gove B, Power SA, Buckley GP, Ghazoul J (2007) Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. J Appl Ecol 44:374–384

    Article  CAS  Google Scholar 

  • Guimarães TG, Fontes PCR, Pereira PRG, Alvarez VH, Monnerat PH (1999) Teores de clorofila determinados por medidor portátil e sua relação com formas de nitrogênio em folhas de tomateiro cultivado em dois tipos de solo. Bragantia. 58:209–210

    Article  Google Scholar 

  • Guo L, Ding Y, Xu Y, Li Z, Jin Y, He K, Fang Y, Zhao H (2017) Responses of Landoltia punctata to cobalt and nickel: removal, growth, photosynthesis, antioxidant system and starch metabolism. Aquat Toxicol 190:87–93

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The waterculture method for growing plants without soil. California Agricultural Experiment Station, Berkeley, p 32p

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huang J, Silva EN, Shen Z, Jiang B, Lu H (2012) Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physicochemical properties of cogongrass (Imperata cylindrical L.). Plant Omi J 5:177–183

    CAS  Google Scholar 

  • Joly CA, Assis MA, Bernacci LC (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica 12:123–145

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kovalchuk I, Kovalchuk O (2008) Transgenic plants as sensors of environmental pollution genotoxicity. Sensors 8:1539–1558

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. In: Colowick SP (ed) 1999Methods in enzimology, 148th edn. Ademic Press, San Diego, pp 350–382

    Google Scholar 

  • Lima DA, Müller C, Costa AC, Batista PF, Dalvi VC, Domingos M (2017) Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action. Ecotoxicol Environ Saf 141:242–250

    Article  Google Scholar 

  • Lucadamo L, Corapi A, Gallo L (2018) Evaluation of glyphosate drift and anthro pogenic atmospheric trace elements contamination by means of lichen transplants in a southern Italian agricultural district. Air Qual Atmos Health 11:325–339

    Article  CAS  Google Scholar 

  • Lukatkin AS, Gar’kova AN, Bochkarjova AS, Olga V, Nushtaeva OV, da Silva JA (2013) Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pestic Biochem Physiol 105:44–49

    Article  CAS  Google Scholar 

  • MacFarlane GR (2003) Chlorophyll a fluorescence as a potential biomarker of zinc stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Bull Environ Contam 70:90–96

    Article  CAS  Google Scholar 

  • Mahakhode RH, Somkuwar SR (2012) Effect of spray application of herbicide gramoxone on morphoanatomical characters of weed Psoralea corylifolia L. Int J Curr Pharm Res 4:64–66

    CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S, Cox L, Cornejo J, Figueroa ME (2009) Effectiveness of Glyphosate and imazamox on the control of the invasive cordgrass Spartina densiflora. Ecotoxicol Environ Saf 72:1694–1700

    Article  CAS  Google Scholar 

  • Meschede DK, Carbonari CA, Velini ED, Trindade MLB, Gomes GLGC (2011) Efeitos do glyphosate nos teores de lignina, celulose e fibra em Brachiaria decumbens. Revista Brasileira de Herbicidas 10:57–63

    Article  Google Scholar 

  • Neves NR, Oliva MA, Cruz Centeno D, Costa AC, Ribas RF, Pereira EG (2009) Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment. Sci Total Environ 407:3740–3745

    Article  CAS  Google Scholar 

  • O’Brian PP, McCully ME (1981) The study of plants structure principles and select methods. Termarcarphi Pty. Ltda, Melbourne, p 45p

    Google Scholar 

  • Olesen CF, Cedergreen N (2010) Glyphosate uncouples gas exchange and chlorophyll fluorescence. Pest Manag Sci 66:536–542

    Article  CAS  Google Scholar 

  • Orcaray L, Zulet A, Zabalza A, Royuela M (2012) Impairment of carbon metabolism induced by the herbicide Glyphosate. J Plant Physiol 169:27–33

    Article  CAS  Google Scholar 

  • Rezende-Silva SL, Costa AC, Dyszy FH, Batista PF, Crispim-Filho AJ, Nascimento KJT, Silva AA (2019) Pouteria torta is a remarkable native plant for biomonitoring the glyphosate effects on Cerrado vegetation. Ecol Indic 102:497–506

    Article  CAS  Google Scholar 

  • Sandmann G, Römer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8:291–302

    Article  CAS  Google Scholar 

  • Santos SA, Tuffi-Santos LD, Sant’Anna-Santos BF, Tanaka FAO, Freitas-Silva L, Júnior AS (2015) Influence of shading on the leaf morphoanatomy and tolerance to Glyphosate in Commelina benghalensis L. and Cyperus rotundus L. Aust J Crop Sci 9:135–142

    Google Scholar 

  • Schrübbers LC, Valverde BE, Sørensen JC, Cedegreen N (2014) Glyphosate spray drift in Coffea arabica—sensitivity of coffee plants and possible use of shikimic acid as a biomarker for glyphosate exposure. Pestic Biochem Physiol 115:15–22

    Article  Google Scholar 

  • Silva FAS, Azevedo CAV (2002) Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais 4:71–78

    Article  Google Scholar 

  • Silva LC, Oliva MA, Azevedo AA, Araújo JM, Aguiar RM (2006) Micromorphological and anatomical alterations caused by simulated acid rain in Restinga plants: Eugenia uniflora and Clusia hilariana. Water Air Soil Pollut 168:129–143

    Article  Google Scholar 

  • Silva LC, Araújo TO, Martinez CA, Lobo FA, Azevedo AA, Oliva MA (2015) Differential responses of C3 and CAM native Brazilian plant species to a SO2- and SPMFe- contaminated Restinga. Environ Sci Pollut Res 22:14007–14017 1-11

    Article  Google Scholar 

  • Silva FB, Vital RG, Batista PF, Costa AC, Jakelaitis A (2016a) Drift from herbicides application on cultivated and native plants: a review. Revista Brasileira de Herbicidas 15:79–88

    Article  Google Scholar 

  • Silva LQ, Lakelaitis A, Filho SCV, Costa AC, Araújo ACF (2016b) Morpho-anatomical changes of pequi leaves (Caryocar brasiliense Cambess.) exposed to simulates drift of glyphosate. Revista Árvore 40:669–677

    Article  Google Scholar 

  • Silva LC, Araújo TO, Siqueira-Silva AI, Pereira TAR, Castro LN, Silva EC, Oliva MA, Azevedo AA (2017) Clusia hilariana and Eugenia uniflora as bioindicators of atmospheric pollutants emitted by an iron pelletizing factory in Brazil. Environ Sci Pollut Res 24:28026–28035

    Article  Google Scholar 

  • Singh BK, Shaner DL (1998) Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol 12:527–530

    Article  CAS  Google Scholar 

  • Szalai G, Janda T, Páldi E, Szigeti Z (1996) Role of light in the development of post chilling symptoms in maize. J Plant Physiol 148:378–383

    Article  CAS  Google Scholar 

  • Tuffi-Santos LD, Sant’Anna-Santos BF, Meira RMSA, Ferreira FA, Tiburcio RAS, Machado AFL (2009) Leaf anatomy and morphometry in three eucalypt clones treated with glyphosate. Braz J Biol 69:129–136

    Article  CAS  Google Scholar 

  • Vital RG, Jakelaitis A, Silva FB, Batista PF, Almeida GA, Costa AC, Rodrigues AA (2017) Physiological changes and in the carbohydrate content of sunflower plants submitted to sub-doses of glyphosate and trinexapac-ethyl. Bragantia. 76:33–41

    Article  Google Scholar 

  • Xu J, Smith S, Smith G, Wang W, Li Y (2019) Glyphosate contamination in grains and foods: An overview. Food Control 106:710

    Article  Google Scholar 

  • Yanniccari M, Tamussi E, Istilart C, Castro AM (2012) Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity. Plant Physiol Biochem 57:210–217

    Article  CAS  Google Scholar 

  • Zobiole LHS, Kremer RJ, Oliveira-Jr RS, Constantin J (2011) Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” Glyphosate to-resistant soybean (Glycine max L.). Pestic Biochem Physiol 99:53–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. C. Silva thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Research Productivity Scholarship 309308/2018-6. The authors also thank the Departamento de Física of Universidade Federal de Viçosa for the scanning electron microscopy support.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Finance code 001). Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) granted a scholarship to Carlos Eduardo Souza Cruz during the research development and granted the Research Productivity Scholarship 309308/2018-6 to Luzimar Campos da Silva.

Author information

Authors and Affiliations

Authors

Contributions

CESC, LFS, CR, and LCS conceived and designed the research. CES conducted the experiments; CESC and LFS conducted the biochemical analyses. CESC, LFS, CR, and LCS discussed the results. LFS wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Luzimar Campos da Silva.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, C.E.S., de Freitas-Silva, L., Ribeiro, C. et al. Physiological and morphoanatomical effects of glyphosate in Eugenia uniflora, a Brazilian plant species native to the Atlantic Forest biome. Environ Sci Pollut Res 28, 21334–21346 (2021). https://doi.org/10.1007/s11356-020-12003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12003-4

Keywords

Navigation