Skip to main content

Advertisement

Log in

Blood markers among residents from a coal mining area

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Coal extraction and processing generate environmental contamination, which has several negative impacts on human health. Hematological and biochemical parameters are effective biomarkers of the exposure of a population to air pollutants. Thus, this study aimed to evaluate hematological and biochemical parameters in adult residents in a coal mining region in the largest national reserve in Brazil, as well as to investigate their relations with air quality. The study included three cities in the south of Brazil, which are located near an important power plant and coal mine. The air quality was analyzed by PM10, NOx, and SO2 at five air quality monitoring stations, socioeconomic and demographic characteristics were evaluated with a questionnaire, and biochemical parameters were assessed in blood samples. The mean PM10 in the study area was 19.18 μg/m3. The air quality varied among the five monitoring stations, and the Candiota station exceeded the reference limit by 63.3%. In general, participants had lived more than 10 years in the municipality and had hepatic and renal parameters within the reference values. A higher prevalence of alterations was found in hematological parameters (43.1%) and liver function (30%). Among the three cities, the population of Pedras Altas seems to have a greater impairment of the blood parameters evaluated. The only parameter that was correlated with PM10 was the hematocrit level (r = 0.33; P < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABEP (2014) Associação Brasileira de Empresas de Pesquisa. Critério Brasil de classificação econômica

  • Abou-ElWafa HS, Albadry AA, El-Gilany A-H, Bazeed FB (2015) Some biochemical and hematological parameters among petrol station attendants: a comparative study. Biomed Res Int 2015:1–6. https://doi.org/10.1155/2015/418724

    Article  Google Scholar 

  • Braga ALF, Pereira LAA, Procópio M, André PA, Saldiva PHN (2007) Associação entre poluição atmosférica e doenças respiratórias e cardiovasculares na cidade de Itabira, Minas Gerais. Brasil Cad Saude Publica 23:S570–S578. https://doi.org/10.1590/s0102-311x2007001600017

    Article  Google Scholar 

  • Cardoso MA, Penteado M d VC (2005) Intervenções nutricionais na anemia ferropriva. Cad Saude Publica 10:231–240. https://doi.org/10.1590/s0102-311x1994000200010

    Article  Google Scholar 

  • Chen Y, Xu X, Zeng Z, Lin X, Qin Q, Huo X (2019) Blood lead and cadmium levels associated with hematological and hepatic functions in patients from an e-waste-polluted area. ECSN. 220:531–538. https://doi.org/10.1016/j.chemosphere.2018.12.129

    Article  CAS  Google Scholar 

  • CONAMA (1990) Resolução CONAMA n 490. In: Licenciamento Ambiental - Normas e Procedimentos

  • CONAMA (2018) Resolução n 491/18 de 18 de novembro de 2018. 7

  • Cortes-Ramirez J, Naish S, Sly PD, Jagals P (2018) Mortality and morbidity in populations in the vicinity of coal mining: a systematic review. BMC Public Health 18. https://doi.org/10.1186/s12889-018-5505-7

  • da Silva Júnior FMR, Tavella RA, Fernandes CLF, Soares MCF, de Almeida KA, Garcia EM, da Silva Pinto EA, Baisch ALM (2018a) Genotoxicity in Brazilian coal miners and its associated factors. Hum Exp Toxicol 37:891–900. https://doi.org/10.1177/0960327117745692

    Article  CAS  Google Scholar 

  • Da Silva Júnior FMR, Pinto EA, Britto T et al (2018b) Feet in danger: short exposure to contaminated soil causing health damage — an experimental study. Environ Sci Pollut Res 25:8669–8675

  • Da Silva-Junior FMR, Oleinski RM, Azevedo AES et al (2018) Vulnerability associated with “symptoms similar to those of mercury poisoning” in communities from Xingu River, Amazon basin. Environ Geochem Health 40:1145–1154. https://doi.org/10.1007/s10653-017-9993-7

    Article  CAS  Google Scholar 

  • De Santana ERR, Sampaio CH, Teixeira EC et al (2011) Sulfated coal ashes characterization aiming its utilization in cement industry-mineralogical reconstruction of Candiota coal (Brazil). Rev Bras Geociencias

  • Dey T, Gogoi K, Unni B, Bharadwaz M, Kalita M, Ozah D, Kalita M, Kalita J, Baruah PK, Bora T (2015) Role of environmental pollutants in liver physiology: special references to peoples living in the oil drilling sites of Assam. PLoS One 10:e0123370. https://doi.org/10.1371/journal.pone.0123370

    Article  CAS  Google Scholar 

  • Donoghue AM (2004) Occupational health hazards in mining: an overview. Occup Med (Chic Ill) 54:290–296. https://doi.org/10.1093/occmed/kqh072

    Article  Google Scholar 

  • Dos Santos M, Soares MCF, Baisch PRM et al (2018) Biomonitoring of trace elements in urine samples of children from a coal-mining region. Chemosphere 197:622–626

    Article  Google Scholar 

  • Elétrica AN de E (2005) Atlas Energia Elétrica do Brasil Capítulo 6. Panorama. ISBN: 978-85-87491-10-7

  • Elvidge T, Matthews IANP, Gregory C (2013) Journal of Environmental Science and Health, Part C: Environmental carcinogenesis and ecotoxicology reviews feasibility of using biomarkers in blood serum as markers of effect following exposure of the lungs to particulate matter air pollution 37–41. https://doi.org/10.1080/10590501.2013.763575

  • Fernández-Navarro P, García-Pérez J, Ramis R, Boldo E, López-Abente G (2012) Proximity to mining industry and cancer mortality. Sci Total Environ 435–436:66–73. https://doi.org/10.1016/j.scitotenv.2012.07.019

    Article  CAS  Google Scholar 

  • Finkelman RB, Orem W, Castranova V et al (2002) Health impacts of coal and coal use: possible solutions, vol 50, pp 425–443

    Google Scholar 

  • Gorriz A, Llacuna S, Nadal MRJ (2002) Effects of air pollution on hematological and plasma parameters in Apodemus sylvaticus and Mus musculus. Arch Environ Contam Toxicol 31:153–158. https://doi.org/10.1007/s002449900091

    Article  Google Scholar 

  • Howel D, Pless-mulloli T, Darnell R (2001) Consultations of children living near open-cast coal mines. Environ Health Perspect 109:567–571

    Article  CAS  Google Scholar 

  • Inoue Y, Umezaki M, Jiang H, Li D, du J, Jin Y, Yang B, Li B, Li Y, Watanabe C (2014) Urinary concentrations of toxic and essential trace elements among rural residents in Hainan Island, China. Int J Environ Res Public Health 11:13047–13064. https://doi.org/10.3390/ijerph111213047

    Article  CAS  Google Scholar 

  • Kargarfard M, Shariat A, Shaw BS, Shaw I, Lam ETC, Kheiri A, Eatemadyboroujeni A, Tamrin SBM (2015) Effects of polluted air on cardiovascular and hematological parameters after progressive maximal aerobic exercise. Lung 193:275–281. https://doi.org/10.1007/s00408-014-9679-1

    Article  CAS  Google Scholar 

  • Kvitko K, Bandinelli E, Henriques JAP et al (2012) Susceptibility to DNA damage in workers occupationally exposed to pesticides, to tannery chemicals and to coal dust during mining. 4:1060–1068

  • Lima-Costa MF, Barreto SM, Giatti L, Uchoa E (2003) Socioeconomic circumstances and health among the Brazilian elderly: a study using data from a National Household Survey. Cad Saude Publica 19:745–757. https://doi.org/10.1590/S0102-311X2003000300007

    Article  Google Scholar 

  • Marchini T, D’Annunzio V, Paz ML et al (2015) Selective TNF-α targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter. Am J Physiol Circ Physiol 309:H1621–H1628. https://doi.org/10.1152/ajpheart.00359.2015

    Article  CAS  Google Scholar 

  • Munawer ME (2018) Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17 (2):87–96

  • Palmeira Wanderley V, Affonso Fonseca FL, Vala Quiaios A, Nuno Domingues J, Paixão S, Figueiredo J, Ferreira A, de Almeida Pinto C, da Silva O, Alvarenga R, Machi Junior A, Luiz Savóia E, Daminello Raimundo R (2017) Socio-environmental and hematological profile of landfill residents (São Jorge landfill–Sao Paulo, Brazil). Int J Environ Res Public Health 14:1–12. https://doi.org/10.3390/ijerph14010064

    Article  Google Scholar 

  • Pereira VC, Almeida J (2015) Relações entre a Atividade Carbonífera e o Rural em Candiota, RS, Brasil: análises sobre representações sociais em um contexto de dilemas sobre a energia. Rev Econ Sociol Rural 53:127–142. https://doi.org/10.1590/1234-56781806-9479005301007

    Article  Google Scholar 

  • Pinto EADS, Garcia EM, De Almeida KA et al (2017) Genotoxicity in adult residents in mineral coal region—a cross-sectional study. Environ Sci Pollut Res 24:16806–16814. https://doi.org/10.1007/s11356-017-9312-y

    Article  CAS  Google Scholar 

  • Pires M, Querol X (2004) Characterization of Candiota (South Brazil) coal and combustion by-product. Int J Coal Geol 60:57–72. https://doi.org/10.1016/j.coal.2004.04.003

    Article  CAS  Google Scholar 

  • Poursafa P, Kelishadi R, Amini A, Amini A, Amin MM, Lahijanzadeh M, Modaresi M (2011) Association of air pollution and hematologic parameters in children and adolescents. 87:87–356. https://doi.org/10.2223/JPED.2115

  • Ramgrab G, Holz M, De Ros L (2000) Principais recursos minerais do Rio Grande do Sul. In: CIGO/UFRGS (ed) Geologia do Rio Grande do Sul, 1st edn. Porto alegre, pp 407–440

  • Ribeiro C (2017) A correlação entre Qualidade de Vida e Indicadores Sanguíneos, Faculdade de Ciências da Educação e Saúde- FACES

  • Rohr P, Kvitko K, da Silva FR, Menezes APS, Porto C, Sarmento M, Decker N, Reyes JM, Allgayer MC, Furtado TC, Salvador M, Branco C, da Silva J (2013) Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res Genet Toxicol Environ Mutagen 758:23–28. https://doi.org/10.1016/j.mrgentox.2013.08.006

    Article  CAS  Google Scholar 

  • Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23:555–592

    Article  Google Scholar 

  • Saldiva PHN, Lichtenfels AJFC, Paiva PSO, et al (1994) Association between air pollution and mortality due to respiratory diseases in children in São Paulo, Brazil: a preliminary report. Environ Res. https://doi.org/10.1006/enrs.1994.1033

  • Tête N, Afonso E, Bouguerra G, Scheifler R (2015) Blood parameters as biomarkers of cadmium and lead exposure and effects in wild wood mice (Apodemus sylvaticus) living along a pollution gradient. Chemosphere, 138:940–946

  • Wallace MAG, Kormos TM, Pleil JD (2016) EPA public access. J Toxicol Environ Health 8:380–409. https://doi.org/10.1080/10937404.2016.1215772.Blood-borne

    Article  Google Scholar 

  • Werner AK, Watt K, Cameron CM, Vink S, Page A, Jagals P (2016) All-age hospitalization rates in coal seam gas areas in Queensland, Australia, 1995-2011. BMC Public Health. https://doi.org/10.1186/s12889-016-2787-5

  • World Energy Council (2016) World energy resources

  • World Health Organization (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005

  • Xu Y, Huang H, Zeng Q, Yu C, Yao M, Hong F, Luo P, Pan X, Zhang A (2017) The effect of elemental content on the risk of dental fluorosis and the exposure of the environment and population to fluoride produced by coal-burning. Environ Toxicol Pharmacol 56:329–339. https://doi.org/10.1016/j.etap.2017.10.011

    Article  CAS  Google Scholar 

  • Ye M, Beach J, Martin JW, Senthilselvan A (2017) Pesticide exposures and respiratory health in general populations. J Environ Sci (China) 51:361–370. https://doi.org/10.1016/j.jes.2016.11.012

    Article  CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2009) The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect 117:898–903. https://doi.org/10.1289/ehp.0800108

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the CAPES for providing doctoral scholarships (Marina dos Santos and Caroline Lopes Feijo Fernandes).

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by Companhia de Geração Térmica de Energia Elétrica. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Manoel Rodrigues da Silva Júnior.

Ethics declarations

Ethical aspects

The study respected the ethical principles of Resolution 466/12 of the National Health Council of the Ministry of Health and was approved by the Research Ethics Committee in the Health Area of the Federal University of Rio Grande (CEPAS/FURG), reference number 036/2013.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigliardi, A.P., Fernandes, C.L.F., Pinto, E.A. et al. Blood markers among residents from a coal mining area. Environ Sci Pollut Res 28, 1409–1416 (2021). https://doi.org/10.1007/s11356-020-10400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10400-3

Keywords

Navigation