Skip to main content

Advertisement

Log in

Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) are an attractive option for treating acid mine drainage (AMD) and are considered to be of great significance in the natural attenuation of AMD, but the available information regarding the highly diverse SRB community in AMD sites is not comprehensive. The Hengshi River, which is continually contaminated by AMD from upstream mining areas, was selected as a study site for investigation of the distribution, diversity, and abundance of SRB. Overall, high-throughput sequencing of the 16S rRNA and dsrB genes revealed the high diversity, richness, and OTU numbers of SRB communities, suggesting the existence of active sulfate reduction in the study area. Further analysis demonstrated that AMD contamination decreased the richness and diversity of the microbial community and SRB community, and led to spatiotemporal shifts in the overall composition and structure of sediment microbial and SRB communities along the Hengshi watershed. However, the sulfate reduction activity was high in the midstream, even though AMD pollution remained heavy in this area. Spatial distributions of SRB community indicated that species of Clostridia may be more tolerant of AMD contamination than other species, because of their predominance in the SRB communities. In addition, the results of CCA revealed that environmental parameters, such as pH, TS content, and Fe content, can significantly influence total microbial and SRB community structure, and dissolved organic carbon was another important factor structuring the SRB community. This study extends our knowledge of the distribution of indigenous SRB communities and their potential roles in natural AMD attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alazard D, Joseph M, Battaglia-Brunet F, Cayol J, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 14:305–312

    Article  CAS  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  Google Scholar 

  • Bao Y, Guo C, Wang H, Lu G, Yang C, Chen M, Dang Z (2017) Fe- and S-metabolizing microbial communities dominate an AMD-contaminated river ecosystem and play important roles in Fe and S cycling. Geomicrobiol J 34:695–705

    Article  CAS  Google Scholar 

  • Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z (2018) Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Sci Total Environ 616-617:647–657

    Article  CAS  Google Scholar 

  • Bertel D, Peck J, Quick TJ, Senko JM (2012) Iron transformations induced by an acid-tolerant Desulfosporosinus species. Appl Environ Microbiol 78:81–88

    Article  CAS  Google Scholar 

  • Brauman A, Müller JA, Garcia JL, Brune A, Schink B (1998) Fermentative degradation of 3-hydroxybenzoate in pure culture by a novel strictly anaerobic bacterium, Sporotomaculum hydroxybenzoicum gen. nov. sp. nov. Int J Syst Bacteriol 48:215–221

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Chamani PM, Marasinghe W, Anne MT, Frank K, William AM (2016) Sediment metal concentration survey along the mine-affected Molonglo River, NSW, Australia. Arch Environ Contam Toxicol 70:572–582

    Article  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chen M, Lu G, Guo C, Yang C, Wu J, Huang W, Yee N, Dang Z (2015) Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere 119:734–743

    Article  CAS  Google Scholar 

  • Chen M, Lu G, Wu J, Yang C, Niu X, Tao X, Shi Z, Yi X, Dang Z (2018) Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: a case study in Dabaoshan Mine, South China. Ecotoxicol Environ Saf 164:474–483

    Article  CAS  Google Scholar 

  • Coggon M, Becerra CA, Nüsslein K, Miller K, Yuretich R, Ergas SJ (2012) Bioavailability of jarosite for stimulating acid mine drainage attenuation. Geochim Cosmochim Acta 78:65–76

    Article  CAS  Google Scholar 

  • Cui J, Chen X, Nie M, Fang S, Tang B, Quan Z, Li B, Fang C (2017) Effects of Spartina alterniflora invasion on the abundance, diversity, and community structure of sulfate reducing bacteria along a successional gradient of coastal salt marshes in China. Wetlands 37:221–232

    Article  Google Scholar 

  • Delavat F, Lett MC, Lièvremont D (2013) Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches. Sci Total Environ 463-464:823–828

    Article  CAS  Google Scholar 

  • Dev S, Roy S, Bhattacharya J (2016) Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling. J Environ Manag 177:101–110

    Article  CAS  Google Scholar 

  • Dugan PR (1975) Bacterial ecology of strip mine areas and its relationship to the production of acidic mine drainage. Ohio J Sci 75:266–279

    CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequencesfrom microbial amplicon reads. Nat Methods 10:996–998

  • Ergas SJ, Harrison J, Bloom J, Forloney K, Ahlfeld DP, Nüsslein K, Yuretich RF (2006) Natural attenuation of acid mine drainage by acidophilic and acidotolerant Fe(III)- and sulfate-reducing bacteria. ACS Symp Ser 940:105–127

    Article  CAS  Google Scholar 

  • Fan L, Tang S, Chen C, Hsieh H (2012) Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability. Microb Ecol 63:224–237

    Article  Google Scholar 

  • Fortin D, Roy M, Rioux JP, Thibault PJ (2000) Occurrence of sulfate-reducing bacteria under a wide range of physico-chemical conditions in Au and Cu-Zn mine tailings. FEMS Microbiol Ecol 33:197–208

    CAS  Google Scholar 

  • Gao P, Sun X, Xiao E, Xu Z, Li B, Sun W (2019) Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. Environ Sci Pollut Res 26(10):9585–9598

    Article  CAS  Google Scholar 

  • García-Moyano A, González-Toril E, Aquilera Á, Amils R (2012) Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol Ecol 81:303–314

    Article  CAS  Google Scholar 

  • Giloteaux L, Duran R, Casiot C, Bruneel O, Elbaz-Poulichet F, Goñi-Urriza M (2013) Three-year survey of sulfate-reducing bacteria community structure in Carnoule’s acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiol Ecol 83:724–737

    Article  CAS  Google Scholar 

  • Hamilton TL, Bovee RJ, Sattin SR, Mohr W, Gilhooly I, William P, Lyons TW, Pearson A, Macalady JL, Spear JR, Loy A (2016) Carbon and sulfur cycling below the chemocline in a meromictic lake and the identification of a novel taxonomic lineage in the FCB Superphylum, Candidatus Aegiribacteria. Front Microbiol 7:598

    Article  Google Scholar 

  • Hamsher SE, Casamatta DA, Filkin NR, McClintic AS, Chiasson WB, Verb GR, Vis ML (2002) A new method for studying nutrient limitation of Periphyton: a case study from acid mine drainage streams. J Phycol 38(s1):15

    Article  Google Scholar 

  • Hipp W, Pott A, Thum-Schmitz N, Faath I, Dahl C, Trüper HG (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143:2891–2902

    Article  CAS  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H (2006) Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72:2080–2091

    Article  CAS  Google Scholar 

  • Jabari L, Gannoun H, Cayol JL, Hamdi M, Ollivier B, Fauque G, Fardeau ML (2013) Desulfotomaculum peckii sp nov., a moderately thermophilic member of the genus Desulfotomaculum, isolated from an upflow anaerobic filter treating abattoir wastewaters. Int J Syst Evol Microbiol 63:2082–2087

    Article  CAS  Google Scholar 

  • Jiang LJ, Zheng YP, Peng XT, Zhou HY, Zhang CL, Xiao X, Wang F (2009) Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol Ecol 70:249–262

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Klein R, Tischler JS, Mühling M, Schlömann M (2014) Bioremediation of mine water. Adv Biochem Eng Biotechnol 141:109–172

    CAS  Google Scholar 

  • Kolmert A, Johnson DB (2001) Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J Chem Technol Biotechnol 76:836–843

    Article  CAS  Google Scholar 

  • Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342

    Article  CAS  Google Scholar 

  • Krishnamurthi S, Spring S, Kumar PA, Mayilraj S, Klenk HP, Suresh K (2013) Desulfotomaculum defluvii sp. nov., a sulfate-reducing bacterium isolated from the subsurface environment of a landfill. Int J Syst Evol Microbiol 63:2290–2295

    Article  CAS  Google Scholar 

  • Loy A, Duller S, Baranyi C, Mußmann M, Ott J, Sharon I, Béjà O, Paslier DL, Dahl C, Wagner M (2009) Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11:289–299

    Article  CAS  Google Scholar 

  • Magoè T, Salzberg SL (2011) FLASH: fast lengthadjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

  • Mardanov AV, Beletskii AV, Ivasenko DA, Pimenov NV, Karnachuk OV, Ravin NV (2017) Sulfate-reducing bacteria in the microbial community of acidic drainage from a gold deposit tailing storage. Microbiology 86(2):286–288

    Article  CAS  Google Scholar 

  • Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475

    Google Scholar 

  • Mohapatra BR, Gould WD, Dinardo O, Koren DW (2011) Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Miner Eng 24:709–718

    Article  CAS  Google Scholar 

  • Petzsch P, Poehlein A, Johnso BD, Daniel R, Schlömann M, Mühling M (2015) Genome sequence of the moderately acidophilic sulfate-reducing Firmicute desulfosporosinus acididurans (strain M1T). Genome Announc 3(4):e00881–e00815

    Google Scholar 

  • Quillet L, Besaury L, Popova M, Paissé S, Deloffre J, Ouddane B (2012) Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway estuary (UK). Mar Biotechnol 14:363–381

    Article  CAS  Google Scholar 

  • Robador A, Jungbluth SP, LaRowe DE, Bowers RM, Rappé MS, Cowen JP (2015) Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust. Front Microbiol 5:748

    Article  Google Scholar 

  • Sánchez-Andrea I, Stams AJM, Amils R, Sanz JL (2013) Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Environ Microbiol Rep 5(5):672–678

    Google Scholar 

  • Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM (2014) Sulfate reduction at low pH to remediate acid mine drainage. J Hazard Mater 269:98–109

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR,Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, SahlJW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source,platform-independent, community-supported software for describing and comparingmicrobial communities. Appl Environ Microbiol 75:7537–7541

  • Sen AM, Johnson B (1999) Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage. Process Metall 9:709–718

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Simmons JA, Lawrence ER, Jones TG (2005) Treated and untreated acid mine drainage effects on stream periphyton biomass, leaf decomposition, and macroinvertebrate diversity. J Freshw Ecol 20(3):413–424

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688–688

    Article  Google Scholar 

  • Sun W, Xiao T, Sun M, Dong Y, Ning Z, Xiao E, Tang S, Li J (2015) Diversity of the sediment microbial community in the Aha watershed (Southwest China) in response to acid mine drainage pollution gradients. Appl Environ Microbiol 81:4874–4884

    Article  CAS  Google Scholar 

  • Sun W, Sun X, Li B, Xu R, Young LY, Dong Y, Zhang M, Kong T, Xiao E, Wang Q (2020) Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: relevance of C, N, and S cycling and metal resistance. Environ Int 138:105601

    Article  CAS  Google Scholar 

  • Taylor MP (2007) Distribution and storage of sediment-associated heavy metals downstream of the remediated Rum Jungle Mine on the East Branch of the Finniss River, Northern Territory, Australia. J Geochem Explor 92:55–72

    Article  CAS  Google Scholar 

  • Tian H, Gao P, Chen Z, Li Y, Li Y, Wang Y, Zhou J, Li G, Ma T (2017) Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Front Microbiol 8:143

    Google Scholar 

  • Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Delpoux S, Fahy A, Javerliat F, Bouchez O, Duran R, Bertin PN, Elbaz-Poulichet F, Lauga B (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 90:247–263

    Article  CAS  Google Scholar 

  • Wang H, Guo CL, Yang CF, Lu GN, Chen MQ, Dang Z (2016) Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. J Appl Microbiol 121(1):196–206

    Article  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Xu R, Li B, Xiao E, Young LY, Sun X, Kong T, Dong Y, Wang Q, Yang Z, Chen L, Sun W (2020) Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environ Pollut 261:114226

    Article  CAS  Google Scholar 

  • Zhang Y, Zhen Y, Mi TZ, He H, Yu ZG (2016) Molecular characterization of sulfate-reducing bacteria community in surface sediments from the adjacent area of Changjiang estuary. J Ocean Univ China 15:107–116

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z (2017) Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Front Microbiol 8:2133

    Article  Google Scholar 

  • Zouch H, Karray F, Armougom F, Chifflet S, Hirschler-Réa A, Kharrat H, Kamoun L, Hania WB, Ollivier B, Sayadi S, Quéméneur M (2017) Microbial diversity in sulfate-reducing marine sediment enrichment cultures associated with anaerobic biotransformation of coastal stockpiled phosphogypsum (Sfax, Tunisia). Front Microbiol 8:1583

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (nos. 41720104004 and 41931288), the National Key Research and Development Program of China (no. 2017YFD0801000), the Fund of Science and Technology Bureau of Shaoguan City (no. 2017SGTYFZ201), and the Guangdong Basic and Applied Basic Research Foundation (no. 2019A1515110811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuling Guo or Zhi Dang.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Jin, X., Guo, C. et al. Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China. Environ Sci Pollut Res 28, 2822–2834 (2021). https://doi.org/10.1007/s11356-020-10248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10248-7

Keywords

Navigation