Skip to main content

Advertisement

Log in

Climatic changes and their role in emergence and re-emergence of diseases

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Global warming and the associated climate changes are predictable. They are enhanced by burning of fossil fuels and the emission of huge amounts of CO2 gas which resulted in greenhouse effect. It is expected that the average global temperature will increase with 2–5 °C in the next decades. As a result, the earth will exhibit marked climatic changes characterized by extremer weather events in the coming decades, such as the increase in temperature, rainfall, summertime, droughts, more frequent and stronger tornadoes and hurricanes. Epidemiological disease cycle includes host, pathogen and in certain cases intermediate host/vector. A complex mixture of various environmental conditions (e.g. temperature and humidity) determines the suitable habitat/ecological niche for every vector host. The availability of suitable vectors is a precondition for the emergence of vector-borne pathogens. Climate changes and global warming will have catastrophic effects on human, animal and environmental ecosystems. Pathogens, especially neglected tropical disease agents, are expected to emerge and re-emerge in several countries including Europe and North America. The lives of millions of people especially in developing countries will be at risk in direct and indirect ways. In the present review, the role of climate changes in the spread of infectious agents and their vectors is discussed. Examples of the major emerging viral, bacterial and parasitic diseases are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams DA, Fullerton KE, Jajosky RA, Sharp P, Onweh DH, Schley AW, Anderson WJ, Faulkner A, Kugeler KJ (2015) Summary of notifiable infectious diseases and conditions--United States, 2013

  • Allsopp BA (2015) Heartwater-Ehrlichia ruminantium infection

  • Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science 341:514–519

    Article  CAS  Google Scholar 

  • Amicizia D, Domnich A, Panatto D, Lai PL, Cristina ML, Avio U, Gasparini R (2013) Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Human Vaccines & Immunotherapeutics 9:1163–1171

    Article  Google Scholar 

  • Andersson Y, Ekdahl K (2006) Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Euro Surveill 11:E060803

    Google Scholar 

  • Andreassen A, Jore S, Cuber P, Dudman S, Tengs T, Isaksen K, Hygen HO, Viljugrein H, Ånestad G, Ottesen P (2012) Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit Vectors 5:177

    Article  Google Scholar 

  • Antonenko YN, Khailova LS, Knorre DA, Markova OV, Rokitskaya TI, Ilyasova TM, Severina II, Kotova EA, Karavaeva YE, Prikhodko AS (2013) Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria. PLoS One 8:e61902

    Article  CAS  Google Scholar 

  • Aransay AM, Testa JM, Morillas-Marquez F, Lucientes J, Ready PD (2004) Distribution of sandfly species in relation to canine leishmaniasis from the Ebro Valley to Valencia, northeastern Spain. Parasitol Res 94:416–420

    Article  Google Scholar 

  • Ariza L, Walter B, Worth C, Brockmann S, Weber M-L, Feldmeier H (2013) Investigation of a scabies outbreak in a kindergarten in Constance, Germany. Eur J Clin Microbiol Infect Dis 32:373–380

    Article  CAS  Google Scholar 

  • Askling H, Bruneel F, Burchard G, Castelli F, Chiodini P, Grobush M, Lopez-Velez R, Paul M, Petersen E, Popescu C (2012) On behalf of the European Society for Clinical Microbiology and Infectious Diseases Study Group on Clinical Parasitology: management of imported malaria in Europe. Malar J 11:328

    Article  Google Scholar 

  • Babaie J, Barati M, Azizi M, Ephtekhari A, Sadat SJ (2018) A systematic evidence review of the effect of climate change on malaria in Iran. J Parasit Dis 42:331–340

    Article  Google Scholar 

  • Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Chang 3:73–77

    Article  Google Scholar 

  • Ballart C, Barón S, Alcover M, Portús M, Gállego M (2012) Distribution of phlebotomine sand flies (Diptera: Psychodidae) in Andorra: first finding of P. perniciosus and wide distribution of P. ariasi. Acta Trop 122:155–159

    Article  CAS  Google Scholar 

  • Baylis M (2017) Potential impact of climate change on emerging vector-borne and other infections in the UK. Environ Health 16:112

    Article  Google Scholar 

  • Beesley N, Caminade C, Charlier J, Flynn R, Hodgkinson J, Martinez-Moreno A, Martinez-Valladares M, Perez J, Rinaldi L, Williams D (2018) Fasciola and fasciolosis in ruminants in Europe: identifying research needs. Transbound Emerg Dis 65:199–216

    Article  Google Scholar 

  • Ben Ari T, Gershunov A, Gage KL, Snäll T, Ettestad P, Kausrud KL, Stenseth NC (2008) Human plague in the USA: the importance of regional and local climate. Biol Lett 4:737–740

    Article  Google Scholar 

  • Bern C, Montgomery SP, Herwaldt BL, Rassi A, Marin-Neto JA, Dantas RO, Maguire JH, Acquatella H, Morillo C, Kirchhoff LV (2007) Evaluation and treatment of Chagas disease in the United States: a systematic review. Jama 298:2171–2181

    Article  CAS  Google Scholar 

  • Berthová L, Slobodník V, Slobodník R, Olekšák M, Sekeyová Z, Svitálková Z, Kazimírová M, Špitalská E (2016) The natural infection of birds and ticks feeding on birds with Rickettsia spp. and Coxiella burnetii in Slovakia. Exp Appl Acarol 68:299–314

    Article  Google Scholar 

  • Beugnet F, Chalvet-Monfray K (2013) Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp Immunol Microbiol Infect Dis 36:559–566

    Article  CAS  Google Scholar 

  • Biagini P, Thèves C, Balaresque P, Geraut A, Cannet C, Keyser C, Nikolaeva D, Gerard P, Duchesne S, Orlando L (2012) Variola virus in a 300-year-old Siberian mummy

  • Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on earth. Proc Natl Acad Sci 104:13455–13460

    Article  CAS  Google Scholar 

  • Biswas G, Sankara DP, Agua-Agum J, Maiga A (2013) Dracunculiasis (guinea worm disease): eradication without a drug or a vaccine. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120146

    Article  Google Scholar 

  • Boecken G, Sunderkoetter C, Bogdan C, Weitzel T, Fischer M, Mueller A, Loebermann M, Anders G, Schunk M, Burchard G (2011) Diagnosis and therapy of cutaneous and mucocutaneous Leishmaniasis in Germany. Journal der Deutschen Dermatologischen Gesellschaft= journal of the German Society of Dermatology 9:1–51

    Article  Google Scholar 

  • Boissier J, Moné H, Mitta G, Bargues MD, Molyneux D, Mas-Coma S (2015) Schistosomiasis reaches Europe. Lancet Infect Dis 15:757–758

    Article  Google Scholar 

  • Bouchard C, Dibernardo A, Koffi J, Wood H, Leighton P, Lindsay L (2019) Augmentation du risque de maladies transmises par les tiques dans le contexte des changements climatiques et environnementaux. Relevé des Maladies Transmissibles au Canada 45:89–98

    Article  Google Scholar 

  • Brown WC, Barbet AF (2016) Persistent infections and immunity in ruminants to arthropod-borne bacteria in the family Anaplasmataceae. Annual Review of Animal Biosciences 4:177–197

    Article  CAS  Google Scholar 

  • Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, Stenlund H, Martens P, Lloyd SJ (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci 111:3286–3291

    Article  CAS  Google Scholar 

  • Caminade C, Turner J, Metelmann S, Hesson JC, Blagrove MS, Solomon T, Morse AP, Baylis M (2017) Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc Natl Acad Sci 114:119–124

    Article  CAS  Google Scholar 

  • Cann K, Thomas DR, Salmon R, Wyn-Jones A, Kay D (2013) Extreme water-related weather events and waterborne disease. Epidemiology & Infection 141:671–686

    Article  CAS  Google Scholar 

  • Cassell JA, Middleton J, Nalabanda A, Lanza S, Head MG, Bostock J, Hewitt K, Jones CI, Darley C, Karir S (2018) Scabies outbreaks in ten care homes for elderly people: a prospective study of clinical features, epidemiology, and treatment outcomes. Lancet Infect Dis 18:894–902

    Article  Google Scholar 

  • CDC (2017a) The Centers for Disease Control and Prevention The burden of schistosomiasis (schisto, bilharzia, snail fever)

  • CDC (2017b) Centers for Disease Control and Prevention parasites—onchocerciasis (also known as river blindness). Epidemiology and risk factors

  • CE TKVDM (2007) Higgs S A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201

    Article  CAS  Google Scholar 

  • Chandler DJ, Fuller LC (2019) A review of scabies: an infestation more than skin deep. Dermatology 235:79–90

    Article  Google Scholar 

  • Chénier S, Côté G, Vanderstock J, Macieira S, Laperle A, Hélie P (2010) An eastern equine encephalomyelitis (EEE) outbreak in Quebec in the fall of 2008. The Canadian Veterinary Journal 51:1011

    Google Scholar 

  • Control CfD, Prevention (2013) Lymphatic filariasis: epidemiology and risk factors. Diakses pada

  • Cull B, Pietzsch ME, Hansford KM, Gillingham EL, Medlock JM (2018) Surveillance of British ticks: an overview of species records, host associations, and new records of Ixodes ricinus distribution. Ticks and Tick-Borne Diseases 9:605–614

    Article  Google Scholar 

  • Daniel M, Danielova V, Kříž B, Jirsa A, Nožička J (2003) Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in central Europe. Eur J Clin Microbiol Infect Dis 22:327–328

    Article  CAS  Google Scholar 

  • Danis K, Baka A, Lenglet A, Van Bortel W, Terzaki I, Tseroni M, Detsis M, Papanikolaou E, Balaska A, Gewehr S (2011) Autochthonous Plasmodium vivax malaria in Greece, 2011. Eurosurveillance 16:19993

    Google Scholar 

  • Dantas-Torres F (2015) Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. International Journal for Parasitology: Parasites and Wildlife 4:452–461

    Google Scholar 

  • De Gentile L, Picot H, Bourdeau P, Bardet R, Kerjan A, Piriou M, Le Guennic A, Bayssade-Dufour C, Chabasse D, Mott KE (1996) La dermatite cercarienne en Europe: un problème de santé publique nouveau? Bull World Health Organ 74:159

    Google Scholar 

  • Dekoninck W, Hendrickx F, Van Bortel W, Versteirt V, Coosemans M, Damiens D, Hance T, De Clercq EM, Hendrickx G, Schaffner F (2011) Human-induced expanded distribution of Anopheles plumbeus, experimental vector of West Nile virus and a potential vector of human malaria in Belgium. J Med Entomol 48:924–928

    Article  CAS  Google Scholar 

  • Dereure J, Vanwambeke SO, Malé P, Martinez S, Pratlong F, Balard Y, Dedet J-P (2009) The potential effects of global warming on changes in canine leishmaniasis in a focus outside the classical area of the disease in southern France. Vector-Borne and Zoonotic Diseases 9:687–694

    Article  Google Scholar 

  • Dhar-Chowdhury P, Paul KK, Haque CE, Hossain S, Lindsay LR, Dibernardo A, Brooks WA, Drebot MA (2017) Dengue seroprevalence, seroconversion and risk factors in Dhaka, Bangladesh. PLoS Negl Trop Dis 11:e0005475

    Article  Google Scholar 

  • Dhimal M, Ahrens B, Kuch U (2015a) Climate change and spatiotemporal distributions of vector-borne diseases in Nepal–a systematic synthesis of literature. PLoS One 10:e0129869

    Article  CAS  Google Scholar 

  • Dhimal M, Gautam I, Joshi HD, O’Hara RB, Ahrens B, Kuch U (2015b) Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Neglect Tropic Dis 9

  • Dikid T, Jain S, Sharma A, Kumar A, Narain J (2013) Emerging & re-emerging infections in India: an overview. Indian J Med Res 138:19

    CAS  Google Scholar 

  • Dujardin J-C, Campino L, Cañavate C, Dedet J-P, Gradoni L, Soteriadou K, Mazeris A, Ozbel Y, Boelaert M (2008) Spread of vector-borne diseases and neglect of Leishmaniasis, Europe. Emerg Infect Dis 14:1013–1018

    Article  Google Scholar 

  • ECDC (2013): Phlebotomine sandflies: distribution maps Stockholm: European Centre for Disease Prevention and Control

  • Eisen RJ, Eisen L (2018) The blacklegged tick, Ixodes scapularis: an increasing public health concern. Trends Parasitol 34:295–309

    Article  Google Scholar 

  • El-Sayed A (2018) Advances in rabies prophylaxis and treatment with emphasis on immunoresponse mechanisms. International Journal of Veterinary Science and Medicine 6:8–15

    Article  CAS  Google Scholar 

  • El-Sayed A, Awad W (2018) Brucellosis: evolution and expected comeback. International Journal of Veterinary Science and Medicine 6:S31–S35

    Article  Google Scholar 

  • El-Sayed A, Ahmed S, Awad W (2008) Do camels (Camelus dromedarius) play an epidemiological role in the spread of Shiga toxin producing Escherichia coli (STEC) infection? Trop Anim Health Prod 40:469–473

    Article  CAS  Google Scholar 

  • Epizooties OId (2014) Terrestrial animal health code. World Organisation for Animal Health

  • Fatmi SS, Zehra R, Carpenter DO (2017) Powassan Virus—A New Reemerging Tick-Borne Disease. Front Public Health 5:342

  • Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, Beierkuhnlein C, Semenza JC (2013) Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int J Health Geogr 12:51

    Article  Google Scholar 

  • Földvári G, Široký P, Szekeres S, Majoros G, Sprong H (2016) Dermacentor reticulatus: a vector on the rise. Parasit Vectors 9:314

    Article  Google Scholar 

  • Frank C, Littman M, Alpers K, Hallauer J (2006) Vibrio vulnificus wound infections after contact with the Baltic Sea, Germany. Euro Surveill 11:E060817

    Google Scholar 

  • Gage KL, Burkot TR, Eisen RJ, Hayes EB (2008) Climate and vectorborne diseases. Am J Prev Med 35:436–450

    Article  Google Scholar 

  • Gaibani P, Rossini G (2017) An overview of Usutu virus. Microbes Infect 19:382–387

    Article  CAS  Google Scholar 

  • Gálvez R, Descalzo MA, Guerrero I, Miró G, Molina R (2011) Mapping the current distribution and predicted spread of the leishmaniosis sand fly vector in the Madrid region (Spain) based on environmental variables and expected climate change. Vector-Borne and Zoonotic Diseases 11:799–806

    Article  Google Scholar 

  • Garcia-Solache MA, Casadevall A (2010) Global warming will bring new fungal diseases for mammals. MBio 1:e00061–e00010

    Article  Google Scholar 

  • Gassner F, van Overbeek LS (2007) 12. Lyme disease in Europe: facts and no fiction. Emerging pests and vector-borne diseases in Europe, 207

  • Geisler WM (2012) Infections caused by Chlamydia trachomatis: including lymphogranuloma venereum, Netter’s infectious diseases. Elsevier, pp. 335-343

  • Ghazali D, Guericolas M, Thys F, Sarasin F, Arcos Gonzalez P, Casalino E (2018) Climate change impacts on disaster and emergency medicine focusing on mitigation disruptive effects: an international perspective. Int J Environ Res Public Health 15:1379

    Article  Google Scholar 

  • Gilbert L (2010) Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 162:217–225

    Article  Google Scholar 

  • Gilbert L (2016) Louping ill virus in the UK: a review of the hosts, transmission and ecological consequences of control. Exp Appl Acarol 68:363–374

    Article  Google Scholar 

  • Gould EA, Higgs S (2009) Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103:109–121

    Article  CAS  Google Scholar 

  • Greenblatt C, Davis A, Clement B, Kitts C, Cox T, Cano RJ (1999) Diversity of microorganisms isolated from amber. Microb Ecol 38:58–68

    Article  CAS  Google Scholar 

  • Greer A, Ng V, Fisman D (2008) Climate change and infectious diseases in North America: the road ahead. Cmaj 178:715–722

    Google Scholar 

  • Gunda R, Chimbari MJ, Shamu S, Sartorius B, Mukaratirwa S (2017) Malaria incidence trends and their association with climatic variables in rural Gwanda, Zimbabwe, 2005–2015. Malar J 16:393

    Article  Google Scholar 

  • Haines A, Patz JA (2004) Health effects of climate change. Jama 291:99–103

    Article  CAS  Google Scholar 

  • Hakalahti T, Karvonen A, Valtonen E (2006) Climate warming and disease risks in temperate regions–Argulus coregoni and Diplostomum spathaceum as case studies. J Helminthol 80:93–98

    Article  CAS  Google Scholar 

  • Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, Barrat J, Blanton JD, Briggs DJ, Cleaveland S (2015) Estimating the global burden of endemic canine rabies PLoS neglected tropical diseases 9

  • Handmer J, Honda Y, Kundzewicz ZW, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B (2012) Changes in impacts of climate extremes: human systems and ecosystems, managing the risks of extreme events and disasters to advance climate change adaptation special report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, pp 231–290

  • Hansen A, Cameron S, Liu Q, Sun Y, Weinstein P, Williams C, Han G-S, Bi P (2015) Transmission of haemorrhagic fever with renal syndrome in China and the role of climate factors: a review. Int J Infect Dis 33:212–218

    Article  Google Scholar 

  • Hargrove JW (2004) Tsetse population dynamics. The trypanosomiases 2004:139–180

    Google Scholar 

  • Hartemink N, Takken W (2016) Trends in tick population dynamics and pathogen transmission in emerging tick-borne pathogens in Europe: an introduction. Exp Appl Acarol 68:269–278

    Article  Google Scholar 

  • Harvell C, Kim K, Burkholder J, Colwell R, Epstein PR, Grimes D, Hofmann E, Lipp E, Osterhaus A, Overstreet RM (1999) Emerging marine diseases--climate links and anthropogenic factors. Science 285:1505–1510

    Article  CAS  Google Scholar 

  • Hayes ML, Bonaventura J, Mitchell TP, Prospero JM, Shinn EA, Van Dolah F, Barber RT (2001) How are climate and marine biological outbreaks functionally linked?, The ecology and etiology of newly emerging marine diseases. Springer, pp 213–220

  • Hofhuis A, Harms M, van den Wijngaard C, Sprong H, van Pelt W (2015) Continuing increase of tick bites and Lyme disease between 1994 and 2009. Ticks and Tick-Borne Diseases 6:69–74

    Article  Google Scholar 

  • Holbrook, MR (2012) Kyasanur forest disease. Antivir Res 96(3):353–362

  • Huizinga H, McLaughlin G (1990) Thermal ecology of Naegleria fowleri from a power plant cooling reservoir. Appl Environ Microbiol 56:2200–2205

    Article  CAS  Google Scholar 

  • IPC C (2001): Climate change 2001: synthesis report. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland

  • IPPC 2017: Third assessment Report

  • Ivanescu L, Bodale I, Florescu S-A, Roman C, Acatrinei D, Miron L (2016) Climate change is increasing the risk of the reemergence of malaria in Romania. Biomed Res Int 2016:1–7

    Article  Google Scholar 

  • Jado I, Oteo JA, Aldámiz M, Gil H, Escudero R, Ibarra V, Portu J, Portillo A, Lezaun MJ, García-Amil C (2007) Rickettsia monacensis and human disease, Spain. Emerg Infect Dis 13:1405–1407

    Article  CAS  Google Scholar 

  • Jaenson TG, Hjertqvist M, Bergström T, Lundkvist Å (2012) Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit Vectors 5:184

    Article  Google Scholar 

  • Jimenez-Clavero MA (2012) Animal viral diseases and global change: bluetongue and West Nile fever as paradigms. Front Genet 3:105

    Article  Google Scholar 

  • Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygård K, Brun E, Ottesen P, Sævik BK, Ytrehus B (2011) Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors 4:84

    Article  Google Scholar 

  • June C (2018) www.cbc.ca/news/canada/windsor/mosquito-trap-captures-known-carriers-zika-virus-1.4693081

  • Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F, Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363

    Article  CAS  Google Scholar 

  • Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, Shibata S, Zhang C, Tsuji M (2004) Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 54:1837–1843

    Article  CAS  Google Scholar 

  • Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA (2017) Tick-borne viruses and biological processes at the tick-host-virus interface. Front Cell Infect Microbiol 7:339

    Article  CAS  Google Scholar 

  • Kernif T, Leulmi H, Raoult D, Parola P (2016) Emerging tick-borne bacterial pathogens. Emerging Infections 10:295–310

    Article  CAS  Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:e82

    Article  CAS  Google Scholar 

  • Koehler LM, Kloppert B, Hamann H-P, El-Sayed A, Zschöck M (2019) Comprehensive literature review of the sources of infection and transmission routes of Coxiella burnetii, with particular regard to the criteria of “evidence-based medicine”. Comp Immunol Microbiol Infect Dis 64:67–72

    Article  Google Scholar 

  • Kolarova L (2007) Schistosomes causing cercarial dermatitis: a mini-review of current trends in systematics and of host specificity and pathogenicity. Folia Parasitol 54:81–87

    Article  Google Scholar 

  • Krüger A, Rech A, Su XZ, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Tropical Med Int Health 6:983–985

    Article  Google Scholar 

  • Kuhn KG, Campbell-Lendrum DH, Armstrong B, Davies CR (2003) Malaria in Britain: past, present, and future. Proc Natl Acad Sci 100:9997–10001

    Article  CAS  Google Scholar 

  • Kulkarni MA, Berrang-Ford L, Buck PA, Drebot MA, Lindsay LR, Ogden NH (2015) Major emerging vector-borne zoonotic diseases of public health importance in Canada. Emerging Microbes & Infections 4:1–7

    Article  CAS  Google Scholar 

  • Larsen A, Bresciani J, Buchmann K (2004) Increasing frequency of cercarial dermatitis at higher latitudes. Acta Parasitol 49

  • Leistner R, Buchwald D, Beyer M, Philipp S (2017) Scabies outbreak among healthcare workers in a German acute care hospital. J Infect Prev 18:189–192

    Article  Google Scholar 

  • Lindgren E (2000) L. Talleklint, 1′. Polfeldt. Environ. Health Perspect 108:119

    Article  CAS  Google Scholar 

  • Lindgren E, Gustafson R (2001) Tick-borne encephalitis in Sweden and climate change. Lancet 358:16–18

    Article  CAS  Google Scholar 

  • Lu P, Zhou Y, Yu Y, Cao J, Zhang H, Gong H, Li G, Zhou J (2016) RNA interference and the vaccine effect of a subolesin homolog from the tick Rhipicephalus haemaphysaloides. Exp Appl Acarol 68:113–126

    Article  CAS  Google Scholar 

  • Ludwig A, Zheng H, Vrbova L, Drebot M, Iranpour M, Lindsay L (2019) Climate change and infectious diseases: the challenges: increased risk of endemic mosquito-borne diseases in Canada due to climate change. Can Commun Dis Rep 45:91–97

    Article  CAS  Google Scholar 

  • Lukan M, Bullova E, Petko B (2010) Climate warming and tick-borne encephalitis, Slovakia. Emerg Infect Dis 16:524–526

    Article  Google Scholar 

  • Mackey TK, Liang BA, Cuomo R, Hafen R, Brouwer KC, Lee DE (2014) Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin Microbiol Rev 27:949–979

    Article  CAS  Google Scholar 

  • Majoros G, Fehér Z, Deli T, Földvári G (2008) Establishment of Biomphalaria tenagophila snails in Europe. Emerg Infect Dis 14:1812–1814

    Article  Google Scholar 

  • Mannelli A, Bertolotti L, Gern L, Gray J (2012) Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev 36:837–861

    Article  CAS  Google Scholar 

  • Mansfield K, Johnson N, Phipps L, Stephenson J, Fooks A, Solomon T (2009) Tick-borne encephalitis virus–a review of an emerging zoonosis. J Gen Virol 90:1781–1794

    Article  CAS  Google Scholar 

  • Marcogliese D (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27:467–484

    Article  CAS  Google Scholar 

  • Mas-Coma S, Valero M, Bargues M (2008) Effects of climate change on animal and zoonotic helminthiases. Rev Sci Tech 27:443–457

    Article  CAS  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change, 2. Cambridge University Press

  • McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albariño CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST (2012) A New Phlebovirus Associated with Severe Febrile Illness in Missouri. N Engl J Med 367 (9):834–841

  • Medialdea-Carrera R, Melillo T, Gauci C, Rocco G, Borg ML (2018) Letter to the editor: Is malaria re-emerging in southern Europe? Cryptic Plasmodium falciparum malaria in Malta, October 2018. Eurosurveillance 23

  • Medone P, Ceccarelli S, Parham PE, Figuera A, Rabinovich JE (2015) The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20130560

    Article  Google Scholar 

  • Merhej V, Angelakis E, Socolovschi C, Raoult D (2014) Genotyping, evolution and epidemiological findings of rickettsia species. Infect Genet Evol 25:122–137

    Article  Google Scholar 

  • Micallef MJ (2016) The Roman fever: observations on the understanding of malaria in the ancient Roman world. Geographica 5:7

    Google Scholar 

  • Milazzo A, Giles LC, Zhang Y, Koehler AP, Hiller JE, Bi P (2017) Factors influencing knowledge, food safety practices and food preferences during warm weather of Salmonella and Campylobacter cases in South Australia. Foodborne Pathog Dis 14:125–131

    Article  Google Scholar 

  • Min J-G, Xue M (1996) Progress in studies on the overwintering of the mosquito Culex tritaeniorhynchus. The Southeast Asian Journal of Tropical Medicine and Public Health 27:810–817

    CAS  Google Scholar 

  • Mitra AK, Mawson AR (2017) Neglected tropical diseases: epidemiology and global burden. Tropical Medicine and Infectious Disease 2:36

    Article  Google Scholar 

  • Molyneux E (2009) Emergency care for children in resource-constrained countries. Trans R Soc Trop Med Hyg 103:11–15

    Article  Google Scholar 

  • Monge-Maillo B, López-Vélez R (2012) Migration and malaria in Europe. Mediterranean Journal of Hematology and Infectious Diseases 4:e2012014

    Article  Google Scholar 

  • Moore S, Shrestha S, Tomlinson KW, Vuong H (2011) Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. J R Soc Interface 9:817–830

    Article  Google Scholar 

  • Moore S, Shrestha S, Tomlinson KW, Vuong H (2012) Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology. J R Soc Interface 9:817–830

    Article  Google Scholar 

  • Mor S, Walsh M, Willem de Smalen A (2018) Climatic influence on anthrax suitability in warming northern latitudes

  • Morgan J, Dejong R, Snyder S, Mkoji G, Loker E (2001) Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 123:211–228

    Article  Google Scholar 

  • Nakazawa Y, Williams R, Peterson AT, Mead P, Staples E, Gage KL (2007) Climate change effects on plague and tularemia in the United States. Vector-Borne and Zoonotic Diseases 7:529–540

    Article  Google Scholar 

  • Nava A, Shimabukuro JS, Chmura AA, Luz SLB (2017) The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J 58:393–400

    Article  CAS  Google Scholar 

  • Neghina R, Neghina AM, Marincu I, Iacobiciu I (2011) International travel increase and malaria importation in Romania, 2008–2009. Vector-Borne and Zoonotic Diseases 11:1285–1288

    Article  Google Scholar 

  • Ng V, Rees E, Lindsay L, Drebot M, Brownstone T, Sadeghieh T, Khan S (2019) Climate change and infectious diseases: the challenges: could exotic mosquito-borne diseases emerge in Canada with climate change? Can Commun Dis Rep 45:98–107

    Article  CAS  Google Scholar 

  • Nicolescu G, Purcarea-Ciulacu V, Vladimirescu A, Dumitrescu G, Saizu D, Savin E, Sandric I, Mihai F (2016) Could malaria re-emerge in Romania? Int J Infect Dis 45:187–188

    Article  Google Scholar 

  • Ogden N, Gachon P (2019) Climate change and infectious diseases: the challenges: climate change and infectious diseases: what can we expect? Can Commun Dis Rep 45:76–80

    Article  CAS  Google Scholar 

  • Ogden NH, Lindsay LR (2016) Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol 32:646–656

    Article  Google Scholar 

  • Ogden NH, Milka R, Caminade C, Gachon P (2014) Recent and projected future climatic suitability of North America for the Asian tiger mosquito Aedes albopictus. Parasit Vectors 7:532

    Article  Google Scholar 

  • Organization WH (2005) Using climate to predict infectious disease epidemics

  • Organization WH (2018) COP24 special report: health and climate change

  • Pacheco RC, Echaide IE, Alves RN, Beletti ME, Nava S, Labruna MB (2013) Coxiella burnetii in ticks, Argentina. Emerg Infect Dis 19:344–346

    Article  Google Scholar 

  • Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev 16:37–64

    Article  Google Scholar 

  • Paddock CD, Goddard J (2015) The evolving medical and veterinary importance of the Gulf coast tick (Acari: Ixodidae). J Med Entomol 52:230–252

    Article  Google Scholar 

  • Papa A, Mirazimi A, Köksal I, Estrada-Pena A, Feldmann H (2015) Recent advances in research on Crimean-Congo hemorrhagic fever. J Clin Virol 64:137–143

    Article  Google Scholar 

  • Park MS, Park KH, Bahk GJ (2018) Interrelationships between multiple climatic factors and incidence of foodborne diseases. Int J Environ Res Public Health 15:2482

    Article  Google Scholar 

  • Parola P, Raoult D (2001) Tick-borne bacterial diseases emerging in Europe. Clin Microbiol Infect 7:80–83

    Article  CAS  Google Scholar 

  • Parola P, Paddock CD, Raoult D (2005) Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18:719–756

    Article  Google Scholar 

  • Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier P-E, Sotto A, Labauge P, Raoult D (2008) Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS neglected tropical diseases 2

  • Pascual M, Rodó X, Ellner SP, Colwell R, Bouma MJ (2000) Cholera dynamics and El Nino-southern oscillation. Science 289:1766–1769

    Article  CAS  Google Scholar 

  • Paz S (2015) Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20130561

    Article  Google Scholar 

  • Pijnacker R, Goris MG, Te Wierik MJ, Broens EM, van der Giessen JW, de Rosa M, Wagenaar JA, Hartskeerl RA, Notermans DW, Maassen K (2016) Marked increase in leptospirosis infections in humans and dogs in the Netherlands, 2014. Eurosurveillance 21

  • Pointier J, David P, Jarne P (2005) Biological invasions: the case of planorbid snails. J Helminthol 79:249–256

    Article  CAS  Google Scholar 

  • Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C, Bandi C, Otranto D, Urbanelli S (2013) Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit Vectors 6:271

    Article  Google Scholar 

  • Portier C, Thigpen TK, Carter S, Dilworth C, Grambsch A, Gohlke J, Hess J, Howard S, Luber G, Lutz J (2017) A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change. Environmental Health Perspectives/National Institute of Environmental Health

  • Powell JR (2018) Mosquito-borne human viral diseases: why Aedes aegypti? The American Journal of Tropical Medicine and Hygiene 98:1563–1565

    Article  Google Scholar 

  • Prudhomme J, Fontaine A, Lacour G, Gantier J-C, Diancourt L, Velo E, Bino S, Reiter P, Mercier A (2019) The native European Aedes geniculatus mosquito species can transmit chikungunya virus. Emerging Microbes & Infections 8:962–972

    Article  CAS  Google Scholar 

  • Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PP, Baylis M (2005) Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171–181

    Article  CAS  Google Scholar 

  • Ramos JM, Romero D, Belinchon I (2016) Epidemiology of leprosy in Spain: the role of the international migration. PLoS neglected tropical diseases 10

  • Randolph SE (2004) Evidence that climate change has caused ‘emergence’of tick-borne diseases in Europe? International Journal of Medical Microbiology Supplements 293:5–15

    Article  Google Scholar 

  • Ready P (2010) Leishmaniasis emergence in Europe. Eurosurveillance 15:19505

    CAS  Google Scholar 

  • Redshaw CH, Stahl-Timmins WM, Fleming LE, Davidson I, Depledge MH (2013) Potential changes in disease patterns and pharmaceutical use in response to climate change. Journal of Toxicology and Environmental Health, Part B 16:285–320

    Article  CAS  Google Scholar 

  • Renn O, Klinke A, Van Asselt M (2011) Coping with complexity, uncertainty and ambiguity in risk governance: a synthesis. Ambio 40:231–246

    Article  CAS  Google Scholar 

  • Report W (2015) Yellow Fever. https://www.who.int/news-room/fact-sheets/detail/yellow-fever

  • Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli A, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  Google Scholar 

  • Ricciardi A (2006) Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Divers Distrib 12:425–433

    Article  Google Scholar 

  • Rizzoli A, Hauffe HC, Carpi G, Vourc’h G, Neteler M, Rosa R (2011) Lyme borreliosis in Europe. Eurosurveillance 16:19906

    Google Scholar 

  • Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA (2001) Climate variability and change in the United States: potential impacts on water-and foodborne diseases caused by microbiologic agents. Environ Health Perspect 109:211–221

    Google Scholar 

  • Sallares R (2002) Malaria and Rome: a history of malaria in ancient Italy. Oxford University Press on Demand

  • Sanyaolu A, Okorie C, Badaru O, Wynveen E, White S, Wallace W (2016) Chikungunya epidemiology: a global perspective. SM J Public Health Epidemiol 2:1028

    Google Scholar 

  • Schets F, Van den Berg H, Demeulmeester A, Van Dijk E, Rutjes S, Van Hooijdonk H, de Roda Husman A (2006) Vibrio alginolyticus infections in the Netherlands after swimming in the North Sea. Weekly Releases (1997–2007) 11:3077

    Article  Google Scholar 

  • Schmidt JP, Park AW, Kramer AM, Han BA, Alexander LW, Drake JM (2017) Spatiotemporal fluctuations and triggers of Ebola virus spillover. Emerg Infect Dis 23:415–422

    Article  Google Scholar 

  • Scholte E, Den Hartog W, Dik M, Schoelitsz B, Brooks M, Schaffner F, Foussadier R, Braks M, Beeuwkes J (2010) Introduction and control of three invasive mosquito species in the Netherlands, July-October 2010. Eurosurveillance 15:19710

    Google Scholar 

  • Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, Kistemann T (2012) Climate change impact assessment of food-and waterborne diseases. Crit Rev Environ Sci Technol 42:857–890

    Article  Google Scholar 

  • Shikanai-Yasuda MA, Carvalho NB (2012) Oral transmission of Chagas disease. Clin Infect Dis 54:845–852

    Article  Google Scholar 

  • Smith KR, Woodward A, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q, Olwoch JM, Revich B, Sauerborn R, Field C (2017) Human health: impacts, adaptation and co-benefits

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) IPCC fourth assessment report (AR4). Climate change

  • Sonenshine DE (2018) Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int J Environ Res Public Health 15:478

    Article  Google Scholar 

  • Sousa C, Clairouin M, Seixas G, Viveiros B, Novo M, Silva A, Escoval M, Economopoulou A (2012) Ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal: preliminary report. Eurosurveillance 17:20333

    Article  Google Scholar 

  • Ssempiira J, Kissa J, Nambuusi B, Mukooyo E, Opigo J, Makumbi F, Kasasa S, Vounatsou P (2018) Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiology and Control 3:e00070

    Article  Google Scholar 

  • Stuen S, Granquist EG, Silaghi C (2013) Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 3:31

    Article  CAS  Google Scholar 

  • Sykora J, Keleti G, Martinez AJ (1983) Occurrence and pathogenicity of Naegleria fowleri in artificially heated waters. Appl Environ Microbiol 45:974–979

    Article  CAS  Google Scholar 

  • Talapko J, Škrlec I, Alebić T, Jukić M, Včev A (2019) Malaria: the past and the present. Microorganisms 7:179

    Article  CAS  Google Scholar 

  • Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M (2004) Alert threshold algorithms and malaria epidemic detection. Emerg Infect Dis 10:1220–1226

    Article  Google Scholar 

  • Thomas RJ, Dumler JS, Carlyon JA (2009) Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev Anti-Infect Ther 7:709–722

    Article  Google Scholar 

  • Thompson AA, Matamale L, Kharidza SD (2012) Impact of climate change on children’s health in Limpopo Province, South Africa. Int J Environ Res Public Health 9:831–854

    Article  Google Scholar 

  • Tokarevich NK, Tronin AA, Blinova OV, Buzinov RV, Boltenkov VP, Yurasova ED, Nurse J (2011) The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Glob Health Action 4:8448

    Article  Google Scholar 

  • Tokarz R, Williams SH, Sameroff S, Leon MS, Jain K, Lipkin WI (2014) Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol 88:11480–11492

    Article  CAS  Google Scholar 

  • Tokarz R, Sameroff S, Tagliafierro T, Jain K, Williams SH, Cucura DM, Rochlin I, Monzon J, Carpi G, Tufts D (2018) Identification of novel viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks. Msphere 3:e00614–e00617

    Article  Google Scholar 

  • Tong C, Javelle E, Grard G, Dia A, Lacrosse C, Fourié T, Gravier P, Watier-Grillot S, Lancelot R, Letourneur F (2019) Tracking Rift Valley fever: from Mali to Europe and other countries, 2016. Eurosurveillance 24

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5, e1000344

  • Vannier E, Krause PJ (2012) Human babesiosis. N Engl J Med 366:2397–2407

    Article  CAS  Google Scholar 

  • Vannier E, Krause PJ (2020) Babesiosis, Hunter's tropical medicine and emerging infectious diseases. Elsevier, pp 799–802

  • Vazquez A, Jiménez-Clavero M, Franco L, Donoso-Mantke O, Sambri V, Niedrig M, Zeller H, Tenorio A (2011) Usutu virus–potential risk of human disease in Europe. Eurosurveillance 16:19935

    Google Scholar 

  • Walsh AS, Glass GE, Lesser CR, Curriero FC (2008) Predicting seasonal abundance of mosquitoes based on off-season meteorological conditions. Environ Ecol Stat 15:279–291

    Article  Google Scholar 

  • WHO (2017): (WHO report 2017: Global environmental change

  • Wikel SK (2018) Ticks and tick-borne infections: complex ecology, agents, and host interactions. Veterinary Sciences 5:60

    Article  Google Scholar 

  • Ziegler U, Lühken R, Keller M, Cadar D, Van Der Grinten E, Michel F, Albrecht K, Eiden M, Rinder M, Lachmann L (2019) West Nile virus epizootic in Germany, 2018. Antivir Res 162:39–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kamel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A., Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ Sci Pollut Res 27, 22336–22352 (2020). https://doi.org/10.1007/s11356-020-08896-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08896-w

Keywords