Skip to main content

Advertisement

Log in

Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The toxicological knowledge of mancozeb (MZ)-containing commercial formulations on non-target species is scarce and limited. Therefore, the objective of this work was to represent a realistic application scenario by evaluating the toxicity of environmental relevant and higher concentrations of a commercial formulation of MZ using zebrafish embryos. Following determination of the 96-h LC50 value, the embryos at the blastula stage (~ 2 h post-fertilisation, hpf) were exposed to 0.5, 5, and 50 μg L−1 of the active ingredient (~ 40× lower than the 96-h LC50). During the exposure period (96 h), lethal, sublethal, and teratogenic parameters, as well as behaviour analysis, at 120 hpf, were assayed. Biochemical parameters such as oxidative stress–linked enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)), reactive oxygen species (ROS) levels, and glutathione levels (GSH and GSSG), as well as the activity of degradation (glutathione S-transferase (GST) and carboxylesterase (CarE)), neurotransmission (acetylcholinesterase (AChE)), and anaerobic respiration (lactate dehydrogenase (LDH))–related enzymes, were analysed at the end of the exposure period. Exposed embryos showed a marked decrease in the hatching rate and many malformations (cardiac and yolk sac oedema and spinal torsions), with a higher prevalence at the highest concentration. A dose-dependent decreased locomotor activity and a response to an aversive stimulus, as well as a light-dark transition decline, were observed at environmental relevant concentrations. Furthermore, the activities of SOD and GR increased while the activity of GST, AChE, and MDA contents decreased. Taken together, the involvement of mancozeb metabolites and the generation of ROS are suggested as responsible for the developmental phenotypes. While further studies are needed to fully support the hypothesis presented, the potential cumulative effects of mancozeb-containing formulations and its metabolites could represent an environmental risk which should not be disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Adamski Z, Krawiec J, Markiewicz E, Bankiet M, Rybska E, Ratajczak M, Glama M, Scrano L, Bufo SA, Ziemnicki K (2011) Effect of dithiocarbamate fungicide mancozeb on development, reproduction and ultrastructure of fat body of Agrotis segetum moths. Karaelmas Fen ve Mühendislik Dergisi 1:7–16

    Google Scholar 

  • Anderson CC, Aivazidis S, Kuzyk CL, Jain A, Roede JR (2018) Acute maneb exposure significantly alters both glycolysis and mitochondrial function in neuroblastoma cells. Toxicol Sci 165:61–73

    CAS  Google Scholar 

  • Atamanalp M, Yanik T (2003) Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to mancozeb. Turk J Vet Anim Sci 27:1213–1217

    Google Scholar 

  • Atamaniuk TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI (2014) The mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney. Environ Toxicol 29:1227–1235

    CAS  Google Scholar 

  • Bambino K, Chu J (2017) Chapter nine - zebrafish in toxicology and environmental health. In: KC. Sadler (Ed.) Current topics in developmental biology. Academic Press, pp. 331–367 https://doi.org/10.1016/bs.ctdb.2016.10.007

    Google Scholar 

  • Basopo N, Naik YS (2015) Toxicological effects of technical grade and formulated pesticides on esterase activity in freshwater snails H. duryi and L. natalensis. Ann Biol Res 6:37–42

    CAS  Google Scholar 

  • Behra M, Cousin X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, Strahle U (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5:111–118

    CAS  Google Scholar 

  • Birch WX, Prahlad KV (1986) Effects of minute doses of ethylenebisdithiocarbamate disodium salt (nabam) and its degradative products on connective tissue envelopes of the notochord in Xenopus: an ultrastructural study. Cytobios 48:175–184

    CAS  Google Scholar 

  • Blahova J, Plhalova L, Hostovsky M, Divisova L, Dobsikova R, Mikulikova I, Stepanova S, Svobodova Z (2013) Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol 61:82–85

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Braunbeck T, Bottcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species - an update. Altex 22:87–102

    Google Scholar 

  • Buske C, Gerlai R (2014) Diving deeper into Zebrafish development of social behavior: analyzing high resolution data. J Neurosci Methods 234:66–72

    Google Scholar 

  • Cao F, Souders CL 2nd, Li P, Adamovsky O, Pang S, Qiu L, Martyniuk CJ (2019a) Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio). Chemosphere 214:303–313

    CAS  Google Scholar 

  • Cao F, Souders CL 2nd, Li P, Pang S, Liang X, Qiu L, Martyniuk CJ (2019b) Developmental neurotoxicity of maneb: notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. Ecotoxicol Environ Saf 170:227–237

    CAS  Google Scholar 

  • Chandran S, Singh RSP (2007) Comparison of various international guidelines for analytical method validation. Pharmazie 62:4–14

    CAS  Google Scholar 

  • Chung HK, Cho WC, Park HY, Choi SH, Kwon D, Shin WS et al (2019) Chronic exposure to ethylenethiourea induces kidney injury and polycystic kidney in mice. Mol. Cell. Toxicol. 15:57–63

    CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald, R.A. (ed) CRC Handbook of methods for oxygen radical research. CRC Press, Boca Raton, Florida, pp 283–284

  • Costa-Silva DG, Lopes AR, Martins IK, Leandro LP, Nunes MEM, de Carvalho NR, Rodrigues NR, Macedo GE, Saidelles AP, Aguiar C, Doneda M, Flores EMM, Posser T, Franco JL (2018a) Mancozeb exposure results in manganese accumulation and Nrf2-related antioxidant responses in the brain of common carp Cyprinus carpio. Environ Sci Pollut Res Int 25:15529–15540

    CAS  Google Scholar 

  • Costa-Silva DGD, Leandro LP, Vieira PB, de Carvalho NR, Lopes AR, Schimith LE, Nunes MEM, de Mello RS, Martins IK, de Paula AA, Canedo AD, Moreira JCF, Posser T, Franco JL (2018b) N-acetylcysteine inhibits Mancozeb-induced impairments to the normal development of zebrafish embryos. Neurotoxicol Teratol 68:1–12

    Google Scholar 

  • de Joode BW, Barbeau B, Bouchard MF, Mora AM, Skytt Å, Córdoba L, Quesada R, Lundh T, Lindh CH, Mergler D (2016) Manganese concentrations in drinking water from villages near banana plantations with aerial mancozeb spraying in Costa Rica: results from the Infants’ Environmental Health Study (ISA). Environ Pollut 215:247–257

    Google Scholar 

  • De Silva PMC, Pathiratne A, van Gestel CA (2010) Toxicity of chlorpyrifos, carbofuran, mancozeb and their formulations to the tropical earthworm Perionyx excavatus. Appl Soil Ecol 44:56–60

    Google Scholar 

  • Deng J, Yu L, Liu C, Yu K, Shi X, Yeung LW, Lam PK, Wu RS, Zhou B (2009) Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat Toxicol 93:29–36

    CAS  Google Scholar 

  • Domingues I, Oliveira R, Lourenco J, Grisolia CK, Mendo S, Soares AM (2010) Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 152:338–345

    Google Scholar 

  • Durak I, Yurtarslanl Z, Canbolat O, Akyol O (1993) A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta 214:103–104

    CAS  Google Scholar 

  • Eddins D, Cerutti D, Williams P, Linney E, Levin ED (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 32:99–108

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Felix LM, Antunes LM, Coimbra AM (2014) Ketamine NMDA receptor-independent toxicity during zebrafish (Danio rerio) embryonic development. Neurotoxicol Teratol 41:27–34

    CAS  Google Scholar 

  • Felix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Campos S, Matos M, Monteiro SM, Coimbra AM (2016) Ketamine-induced oxidative stress at different developmental stages of zebrafish (Danio rerio) embryos. RSC Adv 6:61254–61266

    CAS  Google Scholar 

  • Felix LM, Antunes LM, Coimbra AM, Valentim AM (2017a) Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine. Psychopharmacology 234:549–558

    CAS  Google Scholar 

  • Felix LM, Serafim C, Martins MJ, Valentim AM, Antunes LM, Matos M, Coimbra AM (2017b) Morphological and behavioral responses of zebrafish after 24h of ketamine embryonic exposure. Toxicol Appl Pharmacol 321:27–36

    CAS  Google Scholar 

  • Felix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Monteiro SM, Matos M, Coimbra AM (2018) Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos. Chemosphere 201:730–739

    CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis: 3d Ed. Cambridge University Press, New York.

  • Flores-García M, Molina-Morales Y, Balza-Quintero A, Benítez-Díaz P, New York, Miranda-Contreras L (2011) Pesticide residues in drinking water of an agricultural community in the state of Mérida, Venezuela. Invest Clin 52:295–311

  • Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE (2019) Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). Aquat Toxicol 206:1–13

    CAS  Google Scholar 

  • Frohlich DA, McCabe MT, Arnold RS, Day ML (2008) The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27:4353–4362

    CAS  Google Scholar 

  • Gartaganis SP, Patsoukis NE, Nikolopoulos DK, Georgiou CD (2007) Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye 21:1406–1411

    CAS  Google Scholar 

  • Geissen V, Ramos FQ, de J Bastidas-Bastidas P, Diaz-Gonzalez G, Bello-Mendoza R, Huerta-Lwanga E, Ruiz-Suarez LE (2010) Soil and water pollution in a banana production region in tropical Mexico. Bull Environ Contam Toxicol 85:407–413

    CAS  Google Scholar 

  • Girardi FA, Bruch GE, Peixoto CS, Dal Bosco L, Sahoo SK, Goncalves CO, Santos AP, Furtado CA, Fantini C, Barros DM (2017) Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos. J Appl Toxicol 37:214–221

    CAS  Google Scholar 

  • Glaberman S, Padilla S, Barron MG (2017) Evaluating the zebrafish embryo toxicity test for pesticide hazard screening. Environ Toxicol Chem 36:1221–1226

    CAS  Google Scholar 

  • Goldoni A, da Silva LB (2012) Mutagenic potential of the fungicide mancozeb in Astyanax jacuhiensis (Teleostei: Characidae). Biosci J 28:297–301

    Google Scholar 

  • Gopi RA, Sathya TN, Goparaju A, Murthy PB (2012) Endocrine disrupting effect of Fenvalerate 20% EC and Mancozeb 80% WP in adult zebra fish (Danio rerio) using vitellogenin as a biomarker. Bull Environ Pharma Life Sci 1:66–72

    Google Scholar 

  • Guiney P, Walker M, Peterson R (1990) The edema in TCDD-exposed lake trout sac fry is an ultrafiltrate of blood, Proceeding 11th Arumal Meeting Society of Environmental Toxicology and Chemistry, Arlington VA, USA, pp. 11–15

  • Gullino ML, Tinivella F, Garibaldi A, Kemmitt GM, Bacci L, Sheppard B (2010) Mancozeb: past, present, and future. Plant Dis 94:1076–1087

    CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases In methods in enzymology. Elsevier, pp 398–405https://doi.org/10.1016/S0076-6879(81)77053-8

    Google Scholar 

  • Haendel MA, Tilton F, Bailey GS, Tanguay RL (2004) Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol Sci 81:390–400

    CAS  Google Scholar 

  • Hagenmaier HE (1974) The hatching process in fish embryos—IV. The enzymological properties of a highly purified enzyme (chorionase) from the hatching fluid of the rainbow trout, Salmo gairdneri rich. Comp. Biochem. Physiol. B Biochem Mol Biol 49:313–324

    CAS  Google Scholar 

  • Hallare AV, Kohler HR, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56:659–666

    CAS  Google Scholar 

  • Harrison Brody A, Chou E, Gray JM, Pokyrwka NJ, Raley-Susman KM (2013) Mancozeb-induced behavioral deficits precede structural neural degeneration. Neurotoxicology 34:74–81

    CAS  Google Scholar 

  • Hartmann S, Vogt R, Kunze J, Rauschert A, Kuhnert KD, Wanzenbock J, Lamatsch DK, Witte K (2018) Zebrafish larvae show negative phototaxis to near-infrared light. PLoS One 13:e0207264

    Google Scholar 

  • Hill AJ, Bello SM, Prasch AL, Peterson RE, Heideman W (2004) Water permeability and TCDD-induced edema in zebrafish early-life stages. Toxicol Sci 78:78–87

    CAS  Google Scholar 

  • Hosokawa M, Satoh T (2002): Measurement of carboxylesterase (CES) activities. Current protocols in toxicology Chapter 4, Unit4 7

  • Hwang ES, Cash JN, Zabik MJ (2003) Determination of degradation products and pathways of mancozeb and ethylenethiourea (ETU) in solutions due to ozone and chlorine dioxide treatments. J Agric Food Chem 51:1341–1346

    CAS  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30:188–193

    CAS  Google Scholar 

  • Kim SJ, Jung HJ, Hyun DH, Park EH, Kim YM, Lim CJ (2010) Glutathione reductase plays an anti-apoptotic role against oxidative stress in human hepatoma cells. Biochimie 92:927–932

    CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  Google Scholar 

  • Knöbel M, Busser FJ, An R-R, Kramer NI, Hermens JL, Hafner C, Tanneberger K, Schirmer K, Scholz S (2012) Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ Sci Technol 46:9690–9700

    Google Scholar 

  • Korshunov KS, Blakemore LJ, Trombley PQ (2017) Dopamine: a modulator of circadian rhythms in the central nervous system. Front Cell Neurosci 11:91

    Google Scholar 

  • Kubrak OI, Atamaniuk TM, Husak VV, Drohomyretska IZ, Storey JM, Storey KB, Lushchak VI (2012) Oxidative stress responses in blood and gills of Carassius auratus exposed to the mancozeb-containing carbamate fungicide tattoo. Ecotoxicol Environ Saf 85:37–43

    CAS  Google Scholar 

  • Lalone CA, Villeneuve DL, Burgoon LD, Russom CL, Helgen HW, Berninger JP, Tietge JE, Severson MN, Cavallin JE, Ankley GT (2013) Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action. Aquat Toxicol 144-145:141–154

    CAS  Google Scholar 

  • Lammer E, Carr G, Wendler K, Rawlings J, Belanger S, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149:196–209

    CAS  Google Scholar 

  • Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    CAS  Google Scholar 

  • Lee HY, Inselman AL, Kanungo J, Hansen DK (2012) Alternative models in developmental toxicology. Syst Biol Reprod Med 58:10–22

    CAS  Google Scholar 

  • Li PA, He Q, Cao T, Yong G, Szauter KM, Fong KS, Karlsson J, Keep MF, Csiszar K (2004) Up-regulation and altered distribution of lysyl oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Brain Res Mol Brain Res 120:115–122

    CAS  Google Scholar 

  • Liu Z, Wang Y, Zhu Z, Yang E, Feng X, Fu Z, Jin Y (2016) Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere 148:163–170

    CAS  Google Scholar 

  • Lopez B, Gonzalez A, Hermida N, Valencia F, de Teresa E, Diez J (2010) Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol 299:H1–H9

    CAS  Google Scholar 

  • Lopez-Fernandez O, Yanez R, Rial-Otero R, Simal-Gandara J (2016) Kinetic modelling of mancozeb hydrolysis and photolysis to ethylenethiourea and other by-products in water. Water Res 102:561–571

    CAS  Google Scholar 

  • Lopez-Fernandez O, Pose-Juan E, Rial-Otero R, Simal-Gandara J (2017) Effects of hydrochemistry variables on the half-life of mancozeb and on the hazard index associated to the sum of mancozeb and ethylenethiourea. Environ Res 154;253–260

    Google Scholar 

  • Lulla A, Barnhill L, Bitan G, Ivanova MI, Nguyen B, O’Donnell K, Stahl MC, Yamashiro C, Klarner FG, Schrader T, Sagasti A, Bronstein JM (2016) Neurotoxicity of the Parkinson disease-associated pesticide Ziram is synuclein-dependent in zebrafish embryos. Environ Health Perspect 124:1766–1775

    CAS  Google Scholar 

  • Lutnicka H, Bojarski B, Ludwikowska A, Wronska D, Kaminska T, Szczygiel J, Troszok A, Szambelan K, Formicki G (2016) Hematological alterations as a response to exposure to selected fungicides in common carp (Cyprinus carpio L.). Folia Biol 64:235–244

    CAS  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    CAS  Google Scholar 

  • Mäki JM, Räsänen J, Tikkanen H, Sormunen R, Mäkikallio K, Kivirikko KI, Soininen R (2002) Inactivation of the lysyl oxidase gene lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106:2503–2509

    Google Scholar 

  • Marques A, Rego A, Guilherme S, Gaivao I, Santos MA, Pacheco M (2016) Evidences of DNA and chromosomal damage induced by the mancozeb-based fungicide Mancozan((R)) in fish (Anguilla anguilla L.). Pestic Biochem Physiol 133:52–58

    CAS  Google Scholar 

  • Massarsky A, Kozal JS, Di Giulio RT (2017) Glutathione and zebrafish: old assays to address a current issue. Chemosphere 168:707–715

    CAS  Google Scholar 

  • Massei R, Vogs C, Renner P, Altenburger R, Scholz S (2015) Differential sensitivity in embryonic stages of the zebrafish (Danio rerio): the role of toxicokinetics for stage-specific susceptibility for azinphos-methyl lethal effects. Aquat Toxicol 166:36–41

    CAS  Google Scholar 

  • Mesnage R, Defarge N, Spiroux de Vendomois J, Seralini GE (2014) Major pesticides are more toxic to human cells than their declared active principles. Biomed Res Int 2014:179691

    Google Scholar 

  • Muntean BS, Horvat CM, Behler JH, Aboualaiwi WA, Nauli AM, Williams FE, Nauli SM (2010) A comparative study of embedded and anesthetized zebrafish in vivo on myocardiac calcium oscillation and heart muscle contraction. Front Pharmacol 1:139

    CAS  Google Scholar 

  • Murussi C, Horn RC, Santi A, Clasen BE, Reis G, Souza D, Bortolotto JW, Manfio CE, Loro VL (2014) Changes in oxidative markers, endogenous antioxidants and activity of the enzyme acetylcholinesterase in farmers exposed to agricultural pesticides - a pilot study. Cienc Rural 44:1186–1193

    CAS  Google Scholar 

  • Osterauer R, Kohler HR (2008) Temperature-dependent effects of the pesticides thiacloprid and diazinon on the embryonic development of zebrafish (Danio rerio). Aquat Toxicol 86:485–494

    CAS  Google Scholar 

  • Pagnon-Minot A, Malbouyres M, Haftek-Terreau Z, Kim HR, Sasaki T, Thisse C, Thisse B, Ingham PW, Ruggiero F, Le Guellec D (2008) Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Dev Biol 316:21–35

    CAS  Google Scholar 

  • Pallavi S, Ajay S (2013) Study on some neural and behavioral changes induced by carbamate (Mancozeb) fungicide on freshwater fish Clarias batrachus. World J Zool 8:376–380

    Google Scholar 

  • Papiya S, Kanamadi R (2000) Effect of mercurial fungicide Emisan®-6 on the embryonic developmental stages of zebrafish, Brachydanio (Danio) rerio. J Adv Zool 21:12–18

    Google Scholar 

  • Pelkowski SD, Kapoor M, Richendrfer HA, Wang X, Colwill RM, Creton R (2011) A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res 223:135–144

    Google Scholar 

  • Pignatelli M, Bonci A (2015) Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron 86:1145–1157

    CAS  Google Scholar 

  • Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ Contam Toxicol 60:145–155

    CAS  Google Scholar 

  • Raposo B, Rodriguez C, Martinez-Gonzalez J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177:1–8

    CAS  Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    CAS  Google Scholar 

  • Richendrfer H, Pelkowski SD, Colwill RM, Creton R (2012) On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res 228:99–106

    CAS  Google Scholar 

  • Rodriguez-Fuentes G, Rubio-Escalante FJ, Norena-Barroso E, Escalante-Herrera KS, Schlenk D (2015) Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp Biochem Physiol C Toxicol Pharmacol 172-173:19–25

    CAS  Google Scholar 

  • Rosenthal H, Alderdice DF (1976) Sublethal effects of environmental stressors, natural and pollutional, on marine fish eggs and larvae. J Fish Res Board Can 33:2047–2065

    CAS  Google Scholar 

  • Saha NC, Giri SK, Chatterjee N, Biswas SJ, Bej S (2016) Acute toxic effects of mancozeb to fish Oreochromis mossambicus (WKH Peters, 1852) and their behaviour. Int J Adv Res Biol Sci 3:40–44

    CAS  Google Scholar 

  • Santos PM, Simoes T, Sa-Correia I (2009) Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics 9:657–670

    CAS  Google Scholar 

  • Santos D, Matos M, Coimbra AM (2014) Developmental toxicity of endocrine disruptors in early life stages of zebrafish, a genetic and embryogenesis study. Neurotoxicol Teratol 46:18–25

    CAS  Google Scholar 

  • Santos D, Vieira R, Luzio A, Félix L (2018) Zebrafish early life stages for toxicological screening: insights from molecular and biochemical markers. In Advances in Molecular Toxicology (Vol. 12, pp. 151-179). Elsevier. https://doi.org/10.1016/B978-0-444-64199-1.00007-5

    Google Scholar 

  • Srivastava P, Singh A (2014) Potential effects of agricultural fungicide (mancozeb) on fish Clarias batrachus. Res J Biol Sci 9:129–134

    Google Scholar 

  • Tierney KB (2011) Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta 1812:381–389

    CAS  Google Scholar 

  • Tilton F, La Du JK, Vue M, Alzarban N, Tanguay RL (2006) Dithiocarbamates have a common toxic effect on zebrafish body axis formation. Toxicol Appl Pharmacol 216:55–68

    CAS  Google Scholar 

  • Todt CE, Bailey DC, Pressley AS, Orfield SE, Denney RD, Snapp IB, Negga R, Bailey AC, Montgomery KM, Traynor WL, Fitsanakis VA (2016) Acute exposure to a Mn/Zn ethylene-bis-dithiocarbamate fungicide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Neurotoxicology 57:112–120

    CAS  Google Scholar 

  • van Boxtel AL, Kamstra JH, Fluitsma DM, Legler J (2010) Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity. Toxicol Appl Pharmacol 244:156–161

    Google Scholar 

  • Van Leeuwen C, Espeldoorn A, Mol F (1986) Aquatic toxicological aspects of dithiocarbamates and related compounds. III. Embryolarval studies with rainbow trout (Salmo gairdneri). Aquat Toxicol 9:129–145

    Google Scholar 

  • Varga ZM (2011) Aquaculture and husbandry at the zebrafish international resource center. In Methods in cell biology (Vol. 104, pp. 453-478). Academic Press. https://doi.org/10.1016/B978-0-12-374814-0.00024-0

    Google Scholar 

  • Westerfield M (2007) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon press

  • Winnicki A, Stańkowska-Radziun M, Radziun K (1970) Structural and mechanical changes in the egg membranes of Salmo gairdneri Rich. during the period of hatching of the larvas. Acta Ichthyol Piscat 1:7–20

    Google Scholar 

  • Wu Q, Yan W, Liu C, Li L, Yu L, Zhao S, Li G (2016) Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo. Environ Pollut 213:793–800

    CAS  Google Scholar 

  • Xu S (2000a) Environmental fate of mancozeb. Environmental monitoring and pest management. Sacramento, United States

    Google Scholar 

  • Xu S (2000b) Environmental fate of ethylenethiourea. California Department of Pesticide Regulation, California

    Google Scholar 

  • Yamagami K (1981) Mechanisms of hatching in fish - secretion of hatching enzyme and enzymatic choriolysis. Am Zool 21:459–471

    CAS  Google Scholar 

  • Yen J, Donerly S, Levin ED, Linney EA (2011) Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol Teratol 33:735–741

    CAS  Google Scholar 

  • Zhang J, Fitsanakis VA, Gu GY, Jing DQ, Ao MF, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    CAS  Google Scholar 

  • Zhao M, Liu L, Mathieson JT, Ehr RJ, Rosas MER (2016) Compositions and methods to modulate the rate of EBIS production from dithiocarbamate fungicides. U.S. Patent No. 9,426,985 . Washington, DC: U.S. Patent and Trademark Office

  • Zhou S, Dong Q, Li S, Guo J, Wang X, Zhu G (2009) Developmental toxicity of cartap on zebrafish embryos. Aquat Toxicol 95:339–346

    CAS  Google Scholar 

  • Zizza M, Di Lorenzo M, Laforgia V, Furia E, Sindona G, Canonaco M, Facciolo RM (2017) HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost. Toxicol Appl Pharmacol 323:26–35

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Fernando Nunes for the experimental assistance in the chromatographic procedures.

This work was financially supported by the European Investment Funds by FEDER/COMPETE/POCI– Operational Competitiveness and Internationalization Programme, under the project POCI-01-0145-FEDER-006958, and the National Funds by FCT—“Fundação para a Ciência e a Tecnologia”, under the project UID/AGR/04033/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís M. Félix.

Ethics declarations

Experiments were carried out in strict accordance with the ethical principles and other requirements on the use of laboratory animals of the EU directive (2010/63/EU) and national legislation for animal experimentation and welfare (Decreto-Lei 113/2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R., Venâncio, C.A.S. & Félix, L.M. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. Environ Sci Pollut Res 27, 21174–21187 (2020). https://doi.org/10.1007/s11356-020-08412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08412-0

Keywords

Navigation