Skip to main content
Log in

Overview performance of lanthanide oxide catalysts in methanation reaction for natural gas production

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A rapid growth in the development of power generation and transportation sectors would result in an increase in the carbon dioxide (CO2) concentration in the atmosphere. As it will continue to play a vital role in meeting current and future needs, significant efforts have been made to address this problem. Over the past few years, extensive studies on the development of heterogeneous catalysts for CO2 methanation have been investigated and reported in the literatures. In this paper, a comprehensive overview of methanation research studies over lanthanide oxide catalysts has been reviewed. The utilisation of lanthanide oxides as CO2 methanation catalysts performed an outstanding result of CO2 conversion and improvised the conversion of acidity from CO2 gas to CH4 gas. The innovations of catalysts towards the reaction were discussed in details including the influence of preparation methods, the structure-activity relationships as well as the mechanism with the purpose of outlining the pathways for future development of the methanation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

Ar:

Argon

atm:

Atmosphere

Ba:

Barium

C2H6 :

Ethane

Ce:

Cerium

CH4 :

Methane

Cl:

Chlorine

CO:

Carbon monoxide

Co:

Cobalt

CO2 :

Carbon dioxide

Cu:

Copper

FTIR:

Fourier transform infrared

GHGs:

Greenhouse gases

GHSV:

Gas hourly space velocity

h:

Hour

H2 :

Hydrogen

H2S:

Hydrogen sulphide

HRTEM:

High-resolution transmission electron microscopy

K:

Potassium

La:

Lanthanum

LOs:

Lanthanide oxides

Mg:

Magnesium

Mn:

Manganese

Mo:

Molybdenum

MS:

Mass spectroscopy

N2 :

Nitrogen

Ni:

Nickel

NO:

Nitrogen monoxide

Pa:

Pascal

Pd:

Palladium

Pr:

Praseodymium

PSA:

Pressure swing adsorption

Rh:

Rhodium

Ru:

Ruthenium

Sm:

Samarium

SO2 :

Sulphur dioxide

Sr:

Strontium

TEM:

Transmission electron microscopy

TPR:

Temperature-programmed reduction

UNFCCC:

United Nations Framework Convention on Climate Change

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  • Aasberg-Petersen K, Dybkjaer I, Ovesen CV, Schjodt NC, Sehested J, Thomsen SG (2011) Natural gas to synthesis gas-catalysts and catalytic process. J Nat Gas Sci Eng 3:423–459

    CAS  Google Scholar 

  • Abate S, Mebrahtu C, Giglio E, Deorsola F, Bensaid S, Perathoner S, Pirone R, Centi G (2016) Catalytic performance of γ-Al2O3-ZrO2-TiO2-CeO2 composite oxide supported Ni-based catalysts for CO2 methanation. Ind Eng Chem Res 55:4451–4460

    CAS  Google Scholar 

  • Abdulrahman RK, Sebastine I (2012) Natural gas sweetening by using iron sponge process: a case study of Hamilton North Gas Field. Am J Sci Res 71:135–142

    Google Scholar 

  • Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci 2:315–321

    CAS  Google Scholar 

  • Bakar WAWA, Ali R, Toemen S (2012) Catalytic methanation reaction over supported nickel–ruthenium oxide base for purification of simulated natural gas. Scientia Iranica 19(3):525–534

    CAS  Google Scholar 

  • Akin AN, Ataman M, Aksoylu AE, Önsan ZI (2002) CO2 fixation by hydrogenation over coprecipitated Co/Al2O3. React Kinet Catal Lett 76(2):265–270

    CAS  Google Scholar 

  • Aldana PAU, Ocampo F, Kobl K, Louis B, Thiboalt-Starzyk F, Daturi M, Bazrin P, Thomas S, Roger AC (2013) Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal Today 215:201–207

    CAS  Google Scholar 

  • Aleman-Nava GS, Casiano-Flores VH, Cardenas-Chavez DL, Charez RD, Scarlat N, Mahlknecht J, Dailemand J-F, Parra R (2014) Renewable energy research progress in Mexico: a review. Renew Sust Energ Rev 32:140–153

    Google Scholar 

  • Anerousis JP, Whitman SK (1984) An updated examination of gas sweetening by the iron sponge process. 1984. Society of Petroleum Engineers of AIME, 59th Annual Technical Conference and Exhibition held in Houston, Texas. Sept 16–19. 1–12

  • Arsalanfar M, Mirzaei AA, Bozorgzadeh HR, Atashi H, Shahriari S, Pourdolat A (2012) Structural characteristics of supported cobalt–cerium oxide catalysts used in Fischer–Tropsch synthesis. J Nat Gas Sci Eng 9:119–129

    CAS  Google Scholar 

  • Asedegbega-Nieto E, Guerrero-Ruíz A, Rodríguez-Ramos I (2005) Study of CO chemisorption on graphite-supported Ru–Cu and Ni–Cu bimetallic catalysts. Thermochim Acta 434(1–2):113–118

    CAS  Google Scholar 

  • Bakar WAWA, Ali R, Kadir AAA, Rosid SJM, Mohammad NS (2012) Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas. J Fuel Chem Technol 40(7):822–830

    Google Scholar 

  • Beuls A, Swalus C, Jacqiemin M, Heyen G, Kavelovic A, Ruiz P (2011) Methanation of CO2: further insight into the methanation over Rh/Al2O3 catalyst. Appl Catal B Environ 113–114:2–10

    Google Scholar 

  • Beuls A, Swalus C, Jacquemin M, Heyen G, Kareloviz A, Ruiz P (2012) Methanation of CO2: further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl Catal B Environ 113–114:2–10

    Google Scholar 

  • Biernat K, Gisw SBI (2012) Review of technology for cleaning biogas to natural gas quality. Combust Engines 1:33–39

    Google Scholar 

  • Boaro M, Colussi S, Trovarelli A (2019) Ceria-based materials in hydrogenation and reforming reactions for CO2 valorization. Front Chem. In press. https://doi.org/10.3389/fchem.2019.00028

  • Borodko Y, Somorjai GA (1999) Catalytic hydrogenation of carbon oxides—a 10-year perspective. Appl Catal A Gen 186(1–2):355–362

    CAS  Google Scholar 

  • Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sebastier process in microchannel reactors. Chem Eng Sci 62(4):1161–1170

    CAS  Google Scholar 

  • Buang NA, Wan Abu Bakar WA, Marsin FA, Razali MH (2008) CO2/H2 methanation on nickel oxide based catalysts doped with various elements for the purification of natural gas. Malaysian J Anal Sci 12(1):217–223

    Google Scholar 

  • Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731

    CAS  Google Scholar 

  • Chang WR, Hwang JJ, Wu W (2017) Environmental impact and sustainability study on biofuels for transportation application. Renew Sust Energ Rev 67:277–288

    CAS  Google Scholar 

  • Chen X, Zhou H, Chen S, Dong X, Lin W (2007) Selective oxidation of CO in excess H2 over Ru/Al2O3 catalyst modified with metal oxide. J Nat Gas Chem 16:409–414

    CAS  Google Scholar 

  • Choe S, Kang H, Kim S, Park S, Park D, Huh D (2005) Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bull Kor Chem Soc 26:1682–1688

    CAS  Google Scholar 

  • Chunhui Z, Yifeng Z, Huazhang L (2010) Effect of samarium on methanation resistance of activated carbon supported ruthenium catalyst for ammonia synthesis. J Rare Earths 28:552–555

    Google Scholar 

  • Curry RN (1981) Fundamental of natural gas conditioning. Penwell Books Publishing Company, Oklahoma, pp 66–67

    Google Scholar 

  • Djinovic P, Galletti C, Specchia S, Specchia V (2011) Ru based catalysts for CO selective methanation reaction in H2-rich gasses. Catal Today 164(1):282–287

    CAS  Google Scholar 

  • Dong X, Pi G, Ma Z, Dong C (2017) The perform of the natural gas industry in the PR of China. Renew Sust Energ Rev 73:582–593

    Google Scholar 

  • Dorner RW, Willaver HD, Hardy DR (2014) United States Patent 8658554 B2. Retrieved on February 25, 2014 from http://www.freepatentsonline.com/

  • Duisberg M, Maier WF, Kraemer M. (2008) WO2008110331A/Retrieved on 18 Sept 2008. http://www.freepatentsonline.com/

  • Duissberg M, Frankfurt, Maier WF, Kraemer M (2010a) United State Patent 20100168257 A1. Retrieved on July 1, 2010 from http://www.freepatentsonline.com/

  • Duissberg M, Maier WF, Kraemer M (2010b) Patentscope W02008/110331 A1. Retrieved on September 18, 2008 from http://www.freepatentsonline.com/

  • Eckle S, Antang HG, Behm RJ (2011) Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts. J Phys Chem C 115:1361–1367

    CAS  Google Scholar 

  • Ertesva IS, Kvamsdal HM, Bolland O (2005) Energy analysis of gas turbine combined-cycle power plant with pre-combustion CO2 capture. Energy 30:5–39

    Google Scholar 

  • Feng YY, Yang W, Chen S, Chu W (2014) Cerium promoted nano nickel catalysts Ni-Ce/CNTs and Ni/Ce/Al2O3 for CO2 methanation. Integr Ferroelectr 151:116–125

    CAS  Google Scholar 

  • Finch JN (1979) United States Patent 4168276. Retrieved on September 18, 1979 from http://patft.uspto.gov/

  • Finch JN, Ripley DL (1976) United States Patent 3988334. Retrieved on October 26, 1976 from http://www.freepatentsonline.com/

  • Fred S (2008) Integrated gasification combined cycle for carbon capture and storage. Gulf Professional Publishing, Burlington

    Google Scholar 

  • Frohning D, Horn G (1983) United States Patent 4368142. Retrieved on January 11, 1983 from http://www.freepatentsonline.com/

  • Gao J, Jia LS, Fanf WP, Li QB, Song H (2009) Methanation of carbon dioxide over the LaNiO3 perovskite catalysts activated under the reactant stream. J Fuel Chem Technol 37(5):573–577

    CAS  Google Scholar 

  • Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759

    CAS  Google Scholar 

  • Habazaki H, Yamasaki M, Zhang B, Kawashima A, Kohno S, Takai T, Hashimoto K (1998) Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloy. Appl Catal A Gen 172:131–140

    CAS  Google Scholar 

  • Hahn KR, Iannuzzi M, Seitsonen AP, Hutter J (2013) Coverage effect of the CO2 adsorption mechanisms on CeO2 (111) by first principle analysis. J Phys Chem C 117:–1701

  • Haldor Topsøe A/S (2005) Methanation of CO over nickel mechanism and kinetics at high H2/Co ratios. J Phys Chem B 109(6):2432–2438

    Google Scholar 

  • Happel J, Hnatow MA (1979) United State Patent 4260553 A. Retrieved on March 5, 1979 from http://patft.uspto.gov/

  • Henville KE (2000) Patentscope W000/16901. Retrieved on July 1, 2010 from http://www.freepatentsonline.com/

  • Hoekman SK, Broch A, Robbins C, Purcell R (2010) CO2 recycling by reaction with renewably-generated hydrogen. Int J Greenhouse Gas Control 4(1):44–50

    CAS  Google Scholar 

  • Holden N, Coplen T (2004) The periodic table of the elements: Chemistry International 26(1):8–9

  • Hu D, Gao J, Ping Y, Jia L, Gunawan P, Zhong Z, Xu G, Gu F, Su F (2012) Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Ind Eng Chem Res 51:4875–4886

    CAS  Google Scholar 

  • Jacquemin M, Beuls A, Ruiz P (2010) Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Catal Today 157(1–4):462–466

    CAS  Google Scholar 

  • Jenewein B, Fuchs M, Hayek K (2003) The CO methanation on Rh/CeO2 and CeO2/Rh model catalysts: a comparative study. Surf Sci 532–535:364–369

    Google Scholar 

  • Jinghuan C, Wenbo S, Junhua L (2011) Catalytic combustion of methane over cerium-doped cobalt chromite catalysts. Catal Today 175(1):216–222

    Google Scholar 

  • Kakaee A-H, Paykani A, Ghajar M (2014) The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines. Renew Sust Energ Rev 38:64–78

    CAS  Google Scholar 

  • Karelovic A, Ruiz P (2013) Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J Catal 301:141–153

    CAS  Google Scholar 

  • Khan MA (2015) Modelling and Forecasting the demand for natural gas in Pakistan. Renew Sust Energ Rev 49:1145–1159

    Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev: Comput Stat 2(2):128–149

    Google Scholar 

  • Kim HY, Lee HM, Park JN (2010) Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. J Phys Chem C 114(15):7128–7131

    CAS  Google Scholar 

  • Kobylinski TP, Swift HE (1976) United States Patent 3947483. Retrieved on March 30, 1976 from http://www.freepatentsonline.com/

  • Kok E, Scott J, Cant N, Trimm D (2011) The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina supported cobalt catalysts. Catal Today 164(1):297–301

    CAS  Google Scholar 

  • Konishcheva MV, Potemkin DI, Badmaev SD, Snytnikov PV, Paukshtis EA, Sobyanin VA, Parmon VN (2016) On the mechanism of CO and CO2 methanation over Ni/CeO2 catalysts. Top Catal 59:1424–1430

    CAS  Google Scholar 

  • Kopyscinski J, Schildhaver TJ, Biollaz SMA (2011) Methanation in a fluided bed reactor with high initial CO partial pressure: part 1. Experimental investigation of hydrodynamics, mass transfer effects and carbon deposition. Chem Eng Sci 66(5):924–934

    CAS  Google Scholar 

  • Kramer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier WF (2009) The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Appl Catal A Gen 369:42–52

    Google Scholar 

  • Kudo K, Komatsu K (1999) Selective formation of methane in reduction of CO2 with water by Raney alloy catalyst. J Mol Catal A Chem 145:257–264

    CAS  Google Scholar 

  • Lee HC, Kim S, Lee KH, Lee OH, Park ED, Ko EY (2006) United State Patent 8067332 B2. Retrieved on May 3, 2006 from http://www.freepatentsonline.com/

  • Li Y (2014) United State Patent 8629077 B2. Retrieved on Jan 14, 2014 from http://www.freepatentsonline.com/

  • Liu H, Zou X, Wang X, Lu X, Ding W (2012a) Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. J Nat Gas Chem 21(7):703

    CAS  Google Scholar 

  • Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012b) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605

    CAS  Google Scholar 

  • Luisetto I, Tuti S, Bartolomeo ED (2012) Co, Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int J Hydrog Energy 57:15992–15999

    Google Scholar 

  • Marwood M, Doepper R, Renken A (1997) In-situ surface and gas phase analysis for kinetic studies under transient conditions: the catalytic hydrogenation of CO2. Appl Catal A Gen 151:223–246

    CAS  Google Scholar 

  • Matsuzaki T, Hanaoka T, Takeuchi K, Arakawa H, Sugi Y, Wei K, Dong T, Reinikainen M (1997) Oxygenates from syngas over highly dispersed cobalt catalysts. Catal Today 36(3):311–324

    CAS  Google Scholar 

  • Miao B, Ma SSK, Wang X, Su H, Chan SH (2016) Catalysis mechanisms of CO2 and CO methanation. Catal Sci Technol 6:4048–4058

    CAS  Google Scholar 

  • Michael K, Golab A, Shulakova V, Ennis-Kinga J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers—a review of the experience from existing storage of operation. Int J Greenh Gas Control 4:659–667

    CAS  Google Scholar 

  • Michiaki Y, Mtsuru K, Eiji A Hiroki H, Asahi K, Katsuhiko A, Koji H (1999) CO2 methanation catalysts prepared from amorphous Ni-Zr-Sm and Ni-Zr-misch metal alloy precursors. Journal Material Science & Engineering. Institute for Materials Research, Tohoku University, Sendai, Japan

  • Mokhatab S, Poe WA, Speight JG (2006) Handbook of natural gas: transmission and processing. Elsevier, Amsterdam

    Google Scholar 

  • Munik P, Velthoen MEZ, Jongh PED, Jong KPD, Gommes CJ (2014) Nanoparticle growth in supported nickel catalysts during methanation reaction—larger is better. Angew Chem Int Ed 53:9493–9497

    Google Scholar 

  • Myers RH, Khuri AI, Vining G (1992) Response surface alternative to the Taguchi robust parameter design approach. Am Stat 46(2):131–139

    Google Scholar 

  • Niven RK (2005) Ethanol in gasoline: environmental impacts and sustainability review article. Renew Sust Energ Rev 9(6):535–555

    CAS  Google Scholar 

  • Ocampo F, Louis B, Roger AC (2009) Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Appl Catal A Gen 369:90–96

    CAS  Google Scholar 

  • Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl Catal A Gen 392(1–2):36–44

    CAS  Google Scholar 

  • Ortego JD, Jothimurugesan JK, Espinoza RL, Coy KL, Ortego CB (2006) United State Patent 7071239 B2. Retrieved on July 4, 2006 from http://www.freepatentsonline.com/

  • Pan Q, Peng J, Sun T, Gao D, Wang S, Wang S (2014) CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas. Fuel Process Technol 123:166–171

    CAS  Google Scholar 

  • Pargeter JK, Ahmad UMU (1980) United States Patent 4196100. Retrieved on April 1, 1980 from http://www.freepatentsonline.com/

  • Puduki M, Yaakob Z (2014) Catalytic aspects of ceria zirconia solid solution: part II. An overview on recent developments in the heterogenous catalytic application of metal loaded ceria-zirconia solid solution. Der Pharma Chem 6(1):224–240

    Google Scholar 

  • Rahman FA, Aziz MMA, Saidur R, Wan Abu Bakar WA, Hainin MR, Putrajaya R, Hassan NA (2017) Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew Sust Energ Rev 71:112–126

    Google Scholar 

  • Ramaroson E, Tempere JF, Guilleux MF (1992) Spectroscopic characterization and reactivity study of ceria-supported nickel catalysts. J Chem Soc Faraday Transact 88(8):1211–1218

    CAS  Google Scholar 

  • Rao GR, Mishra BG (2003) Structural, redox and catalytic chemistry of ceria based materials. Bull Catal Soc India 2:122–134

    Google Scholar 

  • Razzaq R, Zhu HW, Jiang L, Muhammad U, Li C, Zhang S (2013) Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2. Ind Eng Chem Res 52:2247–2256

    CAS  Google Scholar 

  • Riboldi L, Bolland O (2017) Overview on pressure swing adsorption (PSA) as CO2 capture technology: state of the art, limits and potentials. Energy Procedia 114(2390):2400

    Google Scholar 

  • Rosid SJM, Abu Bakar WAW, Ali R (2013) Methanation reaction over samarium oxide based catalysts. Malaysian J Fundament Appl Sci 9(1):28–34

    Google Scholar 

  • Rosid SJM, Abu Bakar WAW, Ali R (2015a) Catalytic CO2/H2 methanation reaction over alumina supported manganese/cerium oxide based catalysts. Adv Mater Res 1107:67–72

    Google Scholar 

  • Rosid SJM, Bakar WAWA, Ali R (2015b) Physicochemical study of supported cobalt–lanthanum oxide-based catalysts for CO2/H2 methanation reaction. Clean Techn Environ Policy 17(1):257–264

  • Rosid SJ, Wan Abu Bakar WA, Ali R (2015c) Optimization of praseodymium oxide based catalysts for methanation reaction of simulated natural gas using Box-Behnken design. Jurnal Teknologi 75(1):55–65

    Google Scholar 

  • Rosid SJM, Abu Bakar WAW, Ali R (2018) Characterization and modelling optimization on methanation activity using Box-Behnken design through cerium doped catalysts. J Clean Prod 170:278–287

    Google Scholar 

  • Rosid SJM, Abu Bakar WAW, Toemen S, Yusoff NM, Azid A, Mokhtar WNAW (2019a) Investigation of active species in methanation reaction over cerium based loading. Malaysian Journal of Fundamental and Applied Sciences. Special Issue on International Conference on Agriculture, Animal Sciences and Food Technology (ICAFT 2018b) 319–323

  • Rosid SJM, Toemen S, Abu Bakar WAW, Zamani AH, Mokhtar WNAW (2019b) Physicochemical characteristic of neodymium oxide-based catalyst for in-situ CO2/H2 methanation reaction. J Saudi Cheml Soc 23:284–293

    CAS  Google Scholar 

  • Ruiz P, Jacquemin M, Blangenois N (2009) Patentscope W02010006386 A2. Retrieved on September 15, 2009 from http://www.freepatentsonline.com/

  • Rynkowski J, Farbotko J, Touroude R, Hilaire L (2000) Redox behavior of ceria titania mixed oxide. Appl Catal A: General 203:335–348

    CAS  Google Scholar 

  • Sahki R, Benlounes O, Chérifi O, Thouvenot R, Bettahar MM, Hocine S (2011) Effect of pressure on the mechanisms of the CO2/H2 reaction on a CO-precipitated CuO/ZnO/Al2O3 catalyst. React Kinet Mech Catal 103(2):391–403

    CAS  Google Scholar 

  • Saluko AE (2005) Removal of carbon dioxide from natural gas for LNG production. Institute of Petroleum Technology Norwegian University of Science and Technology

  • Schaper H, Doesburg EBM, Van Reijen LL (1985) Thermal stabilization of high surface area alumina. Appl Catal 14:371

    CAS  Google Scholar 

  • Scholten SA, Allison JD, Dunn BC (2012) United States Patent 8754137 B2. Retrieved on March 15, 2012 from http://www.freepatentsonline.com/

  • Sehested J, Dahl S, Jacobsen J, Rostrup-Niclsen JR (2004) Methanation of CO over nickel: mechanism and kinetic at high H2/CO ratios. J Phys Chem B 109(6):2432–2438

    Google Scholar 

  • Seiyama T (1992) Total oxidation of hydrocarbons on perovskite oxides. Catal Rev Sci Eng 34(4):280–300

    Google Scholar 

  • Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) CO2 methanation on Ru-doped ceria. J Catal 278:297–309

    CAS  Google Scholar 

  • Sharma S, Sravan Kumar KB, Chandnani YM, Phani Kumar VS, Gangwar BP, Singhal A, Deshpande PA (2016) Mechanistic insights into CO2 methanation over Ru-substituted CeO2. J Phys Chem C 120(26):14101–14112

    CAS  Google Scholar 

  • Silva DCDD, Letichevsky S, Borges LEP, Appel LG (2012) Catalyst and the methanation of CO and CO2. Int J Hydrog Energy 37(11):8923–8928

    Google Scholar 

  • Sims CM, Maier RA, Johnston-Peck AC, Gorham JM, Hackley VA, Nelson BC (2019) Approaches for the quantitative analysis of oxidation state in cerium oxide nanomaterials. Nanotechnology 30. 085703:1–14

    Google Scholar 

  • Solarin SA, Ozturk I (2016) The relationship between natural gas consumption and economic growth OPEC members. Renew Sust Energ Rev 58:1348–1356

    Google Scholar 

  • Solymosi F, Erdehelyi A, Bansagi T (1981) Methanation of CO2 on supported rhodium catalyst. J Catal 68:371–382

    CAS  Google Scholar 

  • Song H, Yang J, Zhao J, Chou L (2010) Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chin J Catal 31:21–33

    CAS  Google Scholar 

  • Speight JG (2007) Natural gas: a basic handbook. Gulf Publishing Company, Houston

    Google Scholar 

  • Stevens RW, Siriwardane RV, Logan J (2008) In situ Fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energy Fuel 22:3070–3079

    CAS  Google Scholar 

  • Stookey DJ, Patton CJ, Malcolm GL (1986) Membranes separate gases selectively. CEP, pp. 36–40

  • Strakey JP, Forney AJ, Haynes WP (1975) Department of Commerce National Technical Information Service. Energy Research and Development Administration, Pittsburgh PA. Pittsburgh Energy Centre

  • Su BL, Guo SD (1999) Effects of rare earth oxides on stability of Ni/α-Al2O3 catalysts for steam reforming of methane. Stud Surf Sci Catal 126:325–332

    CAS  Google Scholar 

  • Sudhanshu S, Zhenpeng H, Peng Z, Eric WM, Horia M (2011) CO2 methanation on Ru-doped ceria. J Catal 278:297–309

    Google Scholar 

  • Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrog Energy 37(7):5527–5531

    CAS  Google Scholar 

  • Tada S, Ochieng OJ, Kikuchi R, Hanada T, Kameyama H (2014) Promotion of CO2 methanation activity and CH4 selectivity at low temperature over Ru/CeO2/Al2O3 catalysts. Int J Hydrog Energy 39(19):10090–10100

    CAS  Google Scholar 

  • Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal B Environ 62(3–4):265–273

    CAS  Google Scholar 

  • Toemen S, Wan Abu Bakar WA, Ali R (2014) Copper/nickel/manganese doped cerium oxides based catalysts for hydrogenation of CO2. Bull Kor Chem Soc 35(8):2349

    CAS  Google Scholar 

  • Toemen S, Wan Abu Bakar WA, Ali R (2016) Effect of ceria and strontia over Ru/Mn/Al2O3 catalyst: catalytic methanation, physicochemical and mechanistic studies. J CO2 Util 13:38–49

    CAS  Google Scholar 

  • Vicente MA, Belver C, Trujillano R, Rives V, Alvarez AC, Lambert JF, Korili SA, Gandia LM, Gil A (2004) Preparation and characterization of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Appl Catal A Gen 267:47–58

    CAS  Google Scholar 

  • Bakar WAWA, Othman MY, Ali R, Yong CK, Toemen S (2009) The investigation of active sites on nickel oxide based catalysts towards the in-situ reactions of methanation and desulfurization. Mod Appl Sci 3:36–44

  • Bakar WAWA, Ali R, Mohammad NS (2015) The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts. Arab J Chem 8:632–643

  • Wang A, Lu GQ (1998) Reforming of methane with carbon dioxide over Ni/Al2O3 catalyst: effect of nickel precursor. Appl Catal A: General 169:271–280

    CAS  Google Scholar 

  • Wang F, He S, Chen H, Wang B, Zheng L, Wei M, Evans DG, Duan X (2016) Active site dependent reaction mechanism over Ru/CeO2 catalyst towards CO2 methanation. J Am Chem Soc 138:6298–6305

    CAS  Google Scholar 

  • Wierzbicki D, Debek R, Motak M, Grzybek T, Galvez ME, Da Costa P (2016) Novel Ni-La hydrotalcite derived catalysts for CO2 methanation. Catal Commun 83:5–8

    CAS  Google Scholar 

  • William EL, David ER (2005) Natural gas composition. Gas Technology Institute

  • Wood CD, Gleason EF (1987) United States Patent 4666881. Retrieved on, May 19, 1987 from http://www.freepatentsonline.com/

  • Xavier KO, Sreekala RK, Rashid KA, Yusuff KKM, Sen B (1999) Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation. Catal Today 49:17–21

    CAS  Google Scholar 

  • Xu XY, Lin JJ, Hao ZP (2006) CeO2-Co3O4 catalysts for CO oxidation. J Rare Earths 24:172–176

    Google Scholar 

  • Zamani AH, Ali R, Bakar WAWA (2014) The investigation of Ru/Mn/Cu-Al2O3 oxide catalysts for CO2/H2 methanation in natural gas. J Taiwan Inst Chem Eng 45(1):143–152

    CAS  Google Scholar 

  • Zamani AH, Ali R, Bakar WAWA (2015a) Optimization of CO2 methanation reaction over M*/Mn/Cu–Al2O3 (M*: Pd, Rh and Ru) catalysts. J Ind Eng Chem 29:238–248

    CAS  Google Scholar 

  • Zamani AH, Ali R, Bakar WAWA (2015b) CO2/H2 methanation over M*/Mn/Fe-Al2O3 (M*: Pd, Rh, and Ru) catalysts in natural gas; optimization by response surface methodology-central composite design. Clean Techn Environ Policy 17(3):627–636

    Google Scholar 

  • Zhi G, Guo X, Wang Y, Jin G, Guo X (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal Commun 16(1):56–59

    CAS  Google Scholar 

  • Zuo M, Zhuang S, Tan X, Meng B, Yang N, Liu S (2014) Ionic conducting ceramic-carbonate dual phase hollow fibre membranes for high temperature carbon dioxide separation. J Membr Sci 458:58–65

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Universiti Sultan Zainal Abidin, Universiti Teknologi Malaysia (GUP 13H34) and the Ministry of Higher Education (MOHE) for FRGS vote no. 5F076.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salmiah Jamal Mat Rosid or Susilawati Toemen.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The current technologies used in natural gas to reduce the emission of greenhouse gases have been discussed.

• This paper focused on the potential usage of lanthanide elements as a catalyst in methanation reaction.

• Importance of pathway mechanism in methanation reaction to identify the intermediate species and final product obtained has been considered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosid, S.J.M., Toemen, S., Iqbal, M.M.A. et al. Overview performance of lanthanide oxide catalysts in methanation reaction for natural gas production. Environ Sci Pollut Res 26, 36124–36140 (2019). https://doi.org/10.1007/s11356-019-06607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06607-8

Keywords

Navigation