Skip to main content

Advertisement

Log in

The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An incubation experiment was conducted to investigate whether the type of crop straw added to soil influenced the temperature sensitivity of soil microbial respiration. The soil for incubation was collected from a winter wheat-soybean rotation cropland. Five temperature levels (5, 10, 15, 20, and 25 °C), five crop straw types (soybean, peanut, rice, winter wheat, and maize), and a control (CK, no crop straw addition) were established. Soil microbial respiration rates were measured on days 1, 2, 3, 5, 7, 10, 14, 20, and 27 after crop straw addition using an infrared CO2 analyser. Soil enzyme activities of invertase, urea, and catalase and the dissolved organic carbon (DOC) content were measured after incubation. Estimated Q10 (temperature sensitivity of soil microbial respiration) ranged from 1.472 ± 0.045 to 1.970 ± 0.020 and showed no significant (P > 0.05) difference between straw addition treatments, but there was significantly (P < 0.001) higher temperature sensitivity (1.970 ± 0.020) for CK. A significant (P = 0.002) relationship was found between the Q10 of cumulative soil microbial respiration and basal soil microbial respiration (soil microbial respiration at 0 °C). Moreover, a marginally significant (P < 0.1) relationship was found between the Q10 at different incubation stages and basal soil microbial respiration. A quadratic function was used to explain the relationship between estimated basal microbial respiration and the lignin content. Soil microbial respiration was positively correlated with the activities of invertase, urease, and catalase and the dissolved organic carbon (DOC) content in all treatments. This study indicated that crop straw addition significantly (P < 0.001) reduced the Q10 of soil microbial respiration and that the types of crop straw added to soil did not significantly (P > 0.05) change the Q10 value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3):439–449

    Article  Google Scholar 

  • Ågren GI, Wetterstedt JAM (2007) What determines the temperature response of soil organic matter decomposition? Soil Biol Biochem 39(7):1794–1798

    Article  CAS  Google Scholar 

  • Al-Kaisi MM, Yin XH (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations. J Environ Qual 34(2):437–445

    Article  CAS  Google Scholar 

  • Allison I, Bindoff NL, Bindschadler RA, Cox PM, de Noblet N, England MH, Francis JE, Gruber N, Haywood AM, Karoly DJ (2011) The Copenhagen diagnosis: updating the world on the latest climate science. Elsevier, Oxford

    Google Scholar 

  • Arrhenius S (1889) Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift für Physikalische Chemie 4:226–248

    Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31(11):1471–1479

  • Bell JM, Smith JL, Bailey VL, Bolton H (2003) Priming effect and C storage in semi-arid no-till spring crop rotations. Biol Fert Soils 37(4):237–244

    CAS  Google Scholar 

  • Billings SA, Ballantyne F (2013) How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Global Change Biol 19(1):90–102

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582

    Article  CAS  Google Scholar 

  • Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31(13):1889–1891

    Article  CAS  Google Scholar 

  • Brouns K, Keuskamp JA, Potkamp G, Verhoeven JTA, Hefting MM (2016) Peat origin and land use effects on microbial activity, respiration dynamics and exo-enzyme activities in drained peat soils in the Netherlands. Soil Biol Biochem 95:144–155

    Article  CAS  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2011) Principles of terrestrial ecosystem ecology, 2nd edn. New York, Springer-Verlag

    Book  Google Scholar 

  • Chen S, Zhang X, Liu Y, Hu Z, Shen X, Ren J (2015) Simulated acid rain changed the proportion of heterotrophic respiration in soil respiration in a subtropical secondary forest. Appl Soil Ecol 86(1):148–157

    Article  Google Scholar 

  • Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvonen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JAM, Bradford MA (2011) Temperature and soil organic matter decomposition rates e synthesis of current knowledge and a way forward. Global Change Biol 17(11):3392–3404

    Article  Google Scholar 

  • Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3(12):854–857

    Article  CAS  Google Scholar 

  • Curtin D, Selles F, Wang H, Biederbeck VO, Campbell CA (1998) Carbon dioxide emissions and transformation of soil carbon and nitrogen during wheat straw decomposition. Soil Sci Soc Am J 62(4):1035–1041

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Article  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol 4(2):217–227

    Article  Google Scholar 

  • Deng S, Tabatabai MA (1997) Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biol Fert Soils 24(2):141–146

    Article  CAS  Google Scholar 

  • Ding J, Chen L, Zhang B, Liu L, Yang G, Fang K, Chen Y, Li F, Kou D, Ji C, Luo Y, Yang Y (2016) Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems. Global Biogeochem Cy 30(9):1310–1323

    Article  CAS  Google Scholar 

  • Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Muñoz C, Boudin M, Venegas EZ, Boeckx P (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8(10):780–783. https://doi.org/10.1038/ngeo2516

    Article  CAS  Google Scholar 

  • Erhagen B, Ilstedt U, Nilsson MB (2015) Temperature sensitivity of heterotrophic soil CO2 production increases with increasing carbon substrate uptake rate. Soil Biol Biochem 80:45–52

    Article  CAS  Google Scholar 

  • Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021):57–59

    Article  CAS  Google Scholar 

  • Fierer N, Craine JM, McLauchlan KK, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Fierer N, Colman BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochem Cy 20(3):GB3026. https://doi.org/10.1029/2005GB002644

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Haney RL, Honeycutt CW, Arshad MA, Schomberg HH, Hons FM (2001) Climatic influences on active fractions of soil organic matter. Soil Biol Biochem 33(7–8):1103–1111. https://doi.org/10.1016/S0038-0717(01)00016-5

    Article  CAS  Google Scholar 

  • Giasson MA, Averill C, Finzi AC (2014) Correction factors for dissolved organic carbon extracted from soil, measured using the Mn(III)-pyrophosphate colorimetric method adapted for a microplate reader. Soil Biol Biochem 78:284–287

    Article  CAS  Google Scholar 

  • Gopal M, Gupta A, Arunachalam V, Magu SP (2007) Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresource Technol 98(16):3154–3158

    Article  CAS  Google Scholar 

  • Gu Y, Wang P, Kong C (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45(5–6):436–441

    Article  CAS  Google Scholar 

  • Jacinthe PA, Lal R, Kimble J (2002) Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil Till Res 67(2):147–157

    Article  Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Johnson JL, Temple KL (1964) Some variables affecting the measurement of “catalase activity” in soil. Soil Sci Soc Am J 28:207–209

    Article  CAS  Google Scholar 

  • Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke J-A, Wookey PA, Ågren GI, Sebastià M-T, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513(81):81–84

  • Khan MI, Hwang HY, Kim GW, Kim PJ, Das S (2018) Microbial responses to temperature sensitivity of soil respiration in a dry fallow cover cropping and submerged rice mono-cropping system. Appl Soil Ecol 128:98–108. https://doi.org/10.1016/j.apsoil.2018.04.002

    Article  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition - still a topic of debate. Soil Biol Biochem 38(9):2510–2518

    Article  CAS  Google Scholar 

  • Kucera C, Kirkham D (1971) Soil respiration studies in tallgrass prairie in Missouri. Ecology 52(5):912–915

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38(3):425–448

    Article  CAS  Google Scholar 

  • Li J, He N, Xu L, Chai H, Liu Y, Wang D, Wang L, Wei X, Xue J, Wen X, Sun X (2017) Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biol Biochem 106:18–27

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323

    Article  Google Scholar 

  • Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329(6022):838–840

    Article  CAS  Google Scholar 

  • Meentemeyer V (1978) Microclimate and lignin control of litter decomposition rates. Ecology 59(3):465–472

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B(1):81–99

    Article  CAS  Google Scholar 

  • Raiesi F, Salek-Gilani S (2018) The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Appl Soil Ecol 126:140–147

    Article  Google Scholar 

  • Reichstein M, Subke JA, Angeli AC, Tenhunen JD (2005) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Global Change Biol 11(10):1754–1767

    Article  Google Scholar 

  • Robertson WK, Lutrick MC, Yuan TL (1982) Heavy applications of liquid-digested sludge on three Ultisols: I. Effects on soil chemistry. J Environ Qual 11:278–282

    Article  CAS  Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cy 8(3):279–293. https://doi.org/10.1029/94GB00993

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition, comparisons of climate and litter quality effects. Oecologia 129(3):407–419

    Article  Google Scholar 

  • Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M (2014) Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant Soil 382(1-2):203–218

    Article  CAS  Google Scholar 

  • Stȩpniewska Z, Wolińska A, Ziomek J (2009) Response of soil catalase activity to chromium contamination. J Environ Sci 21(8):1142–1147

    Article  CAS  Google Scholar 

  • Suleiman AKA, Lourenço KS, Pitombo LM, Mendes LW, Roesch LFW, Pijl A, Carmo JB, Cantarella H, Kuramae EE (2018) Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions. Sci Total Environ 631–632:1089–1099

    Article  CAS  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1):97–104

    Article  Google Scholar 

  • Taylor BR, Prescott CE, Parsons WFJ, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69(10):2242–2250

    Article  Google Scholar 

  • Thangarajan R, Bolan NS, Tian GL, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ 465(6):72–96

    Article  CAS  Google Scholar 

  • Van’t hoff JH (1898) Lectures on theoretical and physical chemistry. Part I. Chemical dynamics (translated by R. A. Lehfeldt). Edward Arnold, London, pp 224–229

    Google Scholar 

  • Wagai R, Kishimoto-Mo AW, Yonemura S, Shirato Y, Hiradate S, Yagasaki Y (2013) Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biol 19(4):1114–1125

    Article  Google Scholar 

  • Walker T, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, Janssens IA, Sigurdsson BD, Richter A (2018) Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Change 8:885–889

    Article  CAS  Google Scholar 

  • Wang C, Yang J, Zhang Q (2006) Soil respiration in six temperate forests in China. Global Change Biol 12(11):2103–2114

    Article  Google Scholar 

  • Wang G, Zhou Y, Xu X, Ruan H, Wang J (2013) Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains China. PLoS ONE 8(1):e53914

    Article  CAS  Google Scholar 

  • Wang Q, He N, Yu G, Gao Y, Wen X, Wang R, Koerner SE, Yu Q (2016) Soil microbial respiration rate and temperature sensitivity along a northsouth forest transect in eastern China: patterns and influencing factors. J Geophys Res Biogeosci 121(2):399–410. https://doi.org/10.1002/2015JG003217

    Article  Google Scholar 

  • Wang Q, Yu Y, He T, Wang Y (2017) Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest. Plant Soil 421:7–17

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Tian P (2018) Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Global Change Biol 24:2841–2849

    Article  Google Scholar 

  • Whitaker J, Ostle N, Nottingham AT, Ccahuana A, Salinas N, Bardgett RD, Meir P, McNamara NP (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102(4):1058–1071. https://doi.org/10.1111/1365-2745.12247

    Article  CAS  Google Scholar 

  • Xu RK, Coventry DR (2003) Soil pH changes associated with lupin and wheat plant materials incorporated in a red–brown earth soil. Plant Soil 250:113–119

    Article  CAS  Google Scholar 

  • Zhou T, Shi P, Hui D, Luo Y (2009) Spatial patterns in temperature sensitivity of soil respiration in China: estimation with inverse modeling. Sci China Ser C 52(10):982–989

    Article  Google Scholar 

  • Zhou W, Hui D, Shen W (2014) Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study. PLoS ONE 9(3):e92531. https://doi.org/10.1371/journal.pone.0092531

    Article  CAS  Google Scholar 

  • Zhou G, Zhang J, Chen L, Zhang C, Yu Z (2016) Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition. Pedosphere 26(3):386–398

    Article  Google Scholar 

Download references

Funding

This study was sponsored by the National Natural Science Foundation of China (NSFC 41775151) and the Six Talent Peaks Project in Jiangsu Province (2015-NY-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Chen.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wu, J. The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw. Environ Sci Pollut Res 26, 30167–30176 (2019). https://doi.org/10.1007/s11356-019-06185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06185-9

Keywords

Navigation