Skip to main content

Advertisement

Log in

Parameters determining the performance of passive flux samplers proposed as a tool to estimate N2O emissions: evaluation at farm level and perspectives

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The passive flux sampling is an economic and easy way to estimate gas emissions from agriculture sources. In the last decade, specific passive flux samplers (PFSs) have been developed to estimate nitrous oxide (N2O) emissions from agriculture sources. Packed with silica gel and zeolite 5A, the PFSs were placed facing the emission source direction close to the ventilation shafts. For validation, air samples were taken at different sampling time during 3 days on two commercial sites. The adsorbed mass of N2O in PFSs was recovered by thermal desorption in the laboratory. Results indicated that the mass of N2O adsorbed in PFSs was from 1.5 to 5.5 μg. A specific adsorption pattern was observed for each sampling. In farm 1, the mass of N2O adsorbed in the PFSs presented a linear behavior as a function of sampling time, and the most determined coefficient values were higher than 0.80. In farm 2, in addition to the sampling time, the N2O concentration and the air flow rate presented an effect on the mass adsorbed in the PFSs. On the other hand, comparison of PFSs versus other techniques indicated that PFSs offer different advantages. However, the selectivity and capacity of the adsorbent bed used need to be improved to enhance the use of PFSs proposed as a tool to estimate N2O emissions.

PFSs enabled N2O sampling that followed a linear behavior as a function of sampling time. Sampling time, [N2O], and air flow rate determined the mass of N2O collected in PFSs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Broucek J (2017) Nitrous oxide production from cattle and swine manure. J Anim Behav Biometeorol 5:13–19

    Article  Google Scholar 

  • CANADA (2017) Agricultural greenhouse gases program. Vol. 2017 http://www.agr.gc.ca/eng/programs-and-services/list-of-programs-and-services/agricultural-greenhouse-gases-program/?id=1461247059955

  • Davidson EA, Kanter D (2014) Inventories and scenarios of nitrous oxide emissions. Environ Res Lett 9:105012

    Article  CAS  Google Scholar 

  • Delgado B, Gonzalez DL, Godbout S, Lagace R, Giroir-Fendler A, Ramirez AA (2017) A study of torrefied cardboard characterization and applications: composition, oxidation kinetics and methane adsorption. Sci Total Environ 593:406–417

    Article  CAS  Google Scholar 

  • Derouane EG, Andre J-M, Lucas AA (1988) Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. J Catal 110:58–73

    Article  CAS  Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P (2014) Climate change 2014 mitigation of climate change. In: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 511–597

    Google Scholar 

  • EPA (2013) Global mitigation of non-CO2 greenhouse gases: 2010–2030. EPA-430-R-13-011. Environmental Protection Agency. Office of Atmospheric Programs, Washington, DC 20005, 410

  • FAO (2017) Greenhouse gas emissions from agriculture, forestry and other land use. Vol. 2017

  • Godbout S, Phillips V, Sneath R (2006) Passive flux samplers to measure nitrous oxide and methane emissions from agricultural sources, part 1: adsorbent selection. Biosyst Eng 94:587–596

    Article  Google Scholar 

  • Godbout S, Pelletier F, Palacios J, Feddes J, Larouche J, Belzile M, Fournel S, Lemay S (2012) Greenhouse gas emissions non-cattle confinement buildings: monitoring, emission factors and mitigation. INTECH Open Access Publisher

  • Guillemot M, Castel B (2015) Workplace nitrous oxide sampling: alternative adsorbents. Ind Eng Chem Res 54(32):7760–7765

  • Harper L, Denmead O, Flesch T (2011) Micrometeorological techniques for measurement of enteric greenhouse gas emissions. Anim Feed Sci Technol 166:227–239

    Article  CAS  Google Scholar 

  • Hassouna M, and Eglin T (2015) Mesurer les émissions gazeuses en élevage–Gaz à effet de serre, ammoniac et oxydes d’azote. Diffusion INRA-ADEME

  • Hongmin D, Mangino J, McAllister TA, Hatfield JL, Johnson D, Lassey, KR, Aparecida de Lima M, Romanovskaya A (2006) IPCC guidelines for national greenhouse gas inventories: chapter 10. Emissions from livestock and manure management. In Volume 4: agriculture, forestry and other land use. IPCC, http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf

  • Larios AD, Brar S, Avalos-Ramírez A, Godbout S, Sandoval-Salas F, Palacios JH (2016) Challenges in the measurement of emissions of nitrous oxide and methane from livestock sector. Rev Environ Sci Biotechnol 15:285–297

    Article  CAS  Google Scholar 

  • Larios A, Brar S, Avalos-Ramírez A, Godbout S, Sandoval-Salas F, Palacios J, Dubé P, Delgado B, Giroir-Fendler A (2017) Parameters determining the use of zeolite 5A as collector medium in passive flux samplers to estimate N2O emissions from livestock sources. Environ Sci Pollut Res 24:12136–12143

    Article  CAS  Google Scholar 

  • Larios AD, Godbout S, Brar SK, Palacios JH, Zegan D, Avalos-Ramirez A, Sandoual-Salas F (2018) Development of passive flux samplers based on adsorption to estimate greenhouse gas emissions from agricultural sources. Biosyst Eng 169:165–174

    Article  Google Scholar 

  • Mayinger F, STEGER RE (1993) Experimental and theoretical investigations concerning coadsorption of. J Energy 15:165–177

    CAS  Google Scholar 

  • Hassouna Mélynda, Thomas E (2015) Mesurer les émissions gazeuses en élevage: gaz à effet de serre, ammoniac et oxydes d‘azote

  • Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J (2013) SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci 91:5070–5094

    Article  CAS  Google Scholar 

  • Mosquera LJ (2003) Guidelines for the use of passive flux samplers (PFS) to measure ammonia emissions from mechanically ventilated animal houses, Rep. No. 9054062339. IMAG

  • Mosquera LJ, Ogink N, Scholtens R (2003) Using passive flux samplers to determine the ammonia emission from mechanically ventilated animal houses

  • Palacios JH, Godbout S, Turcotte S, Ricard MA (2018) Impact of slatted floor on ammonia emissions in fattening swine housing. In 10th International Livestock Environment Symposium (ILES X), pp. 1. ASABE, St. Joseph, MI

  • Tubiello, F. N., Salvatore, M., Cóndor Golec, R. D., Ferrara, A., Rossi, S., Biancalani, R., Federici, S., Jacobs, H., and Flammini, A. (2014). Agriculture, forestry and other land use emissions by sources and removals by sinks.

    Google Scholar 

  • Younas M, Sohail M, Leong L, Bashir MJ, Sumathi S (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13:1839–1860

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our sincere thanks go to Agriculture and Agri-Food Canada for economic support by means of the Agricultural Greenhouse Gases Program (AGGP). The main author would like to thank the Program for the Professional development of Professors (Prodep-Mexico) for the grant to perform the research stage. One coauthor would like to thank the FRQNT (research-college grant) for the financial support to participate in this study.

Funding

This study was financially supported by the Agriculture and Agri-Food Canada program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larios, A.D., Godbout, S., Brar, S.K. et al. Parameters determining the performance of passive flux samplers proposed as a tool to estimate N2O emissions: evaluation at farm level and perspectives. Environ Sci Pollut Res 26, 19655–19664 (2019). https://doi.org/10.1007/s11356-019-04841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04841-8

Keywords

Navigation