Skip to main content
Log in

Thermodynamic and kinetic insights into plant-mediated detoxification of lead, cadmium, and chromium from aqueous solutions by chemically modified Salvia moorcroftiana leaves

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic aspects for the biosorptive removal of Pb, Cd, and Cr metals from water using Chemically Modified Leaves of Salvia moorcroftiana (CMSML) were determined. Different parameters including pH, temperature, metal’s initial concentration, biomass dosage, and contact time were optimized. Optimum biosorptions of Pb, Cd, and Cr were attained at pH values of 6.0, 7.0, and 3.0 respectively. Batch experiments showed maximum removal of both Pb and Cd at 40 °C and that of Cr at 30 °C. Biosorption capability of CMSML was observed to decrease with raising temperature. Optimal equilibrium times for Pb, Cd, and Cr uptake were 120, 60, and 120 min respectively. Based on the values of regression correlation coefficients (R2), the current data is explained better by applying Langmuir isotherms than the Freundlich model. Maximum biosorbent capabilities (qmax) for Pb, Cd, and Cr were approximately 270.27, 100.00, and 93.45 mg/g respectively. Thermodynamically, removal of all the three metal ions was shown to be exothermic and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb (II) and Cu (II) ions from an aqueous solution. Bioresour Technol 97:1780–1787

    Article  CAS  Google Scholar 

  • Aksu Z, Tezer S (2000) Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem 36:431–439

    Article  CAS  Google Scholar 

  • Azizi S, Kamika I, Tekere M (2016) Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS One 11:e0155462

    Article  CAS  Google Scholar 

  • Baral S, Das N, Ramulu T, Sahoo S, Das S, Chaudhury GR (2009) Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J Hazard Mater 161:1427–1435

    Article  CAS  Google Scholar 

  • Barka N, Qourzal S, Assabbane A, Nounah A, Yhya A-I (2008) Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite. J Environ Sci 20:1268–1272

    Article  CAS  Google Scholar 

  • Bedoui K, Bekri-Abbes I, Srasra E (2008) Removal of cadmium (II) from aqueous solution using pure smectite and Lewatite S 100: the effect of time and metal concentration. Desalination 223:269–273

    Article  CAS  Google Scholar 

  • Ben Salem Z, Laffray X, Al-Ashoor A, Ayadi H, Aleya L (2017) Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. J Environ Sci (China) 54:56–68

    Article  Google Scholar 

  • Brown P, Gill S, Allen S (2000) Metal removal from wastewater using peat. Water Res 34:3907–3916

    Article  CAS  Google Scholar 

  • Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K (2012) Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour Technol 113:114–120

    Article  CAS  Google Scholar 

  • Davis T, Volesky B, Vieira R (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  • Dearwent SM, MUMTAZ M, Godfrey G, Sinks T, Falk H (2006) Health effects of hazardous waste. Ann N Y Acad Sci 1076:439–448

    Article  Google Scholar 

  • Edris G, Alhamed Y, Alzahrani A (2014) Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: equilibrium and kinetic study. Arab J Sci Eng 39:87–93

    Article  CAS  Google Scholar 

  • Farhan AM, Al-Dujaili AH, Awwad AM (2013) Equilibrium and kinetic studies of cadmium (II) and lead (II) ions biosorption onto Ficus carcia leaves. International Journal of Industrial Chemistry 4:24

    Article  Google Scholar 

  • Figueira M, Volesky B, Mathieu H (1999) Instrumental analysis study of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846

    Article  CAS  Google Scholar 

  • Fourest E, Roux J-C (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  CAS  Google Scholar 

  • Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Friis N, Myers-Keith P (1986) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28:21–28

    Article  CAS  Google Scholar 

  • Gong R, Ding Y, Li M, Yang C, Liu H, Sun Y (2005) Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments 64:187–192

    Article  CAS  Google Scholar 

  • Hayes RB (1988) Review of occupational epidemiology of chromium chemicals and respiratory cancer. Sci Total Environ 71:331–339

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742

    Article  CAS  Google Scholar 

  • Iakovleva E, Sillanpää M (2013) The use of low-cost adsorbents for wastewater purification in mining industries. Environ Sci Pollut Res 20:7878–7899

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer C (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solutions. Bioresour Technol 98:452–455

    Article  CAS  Google Scholar 

  • Kogej A, Likozar B, Pavko A (2010) Lead biosorption by self-immobilized Rhizopus nigricans pellets in a laboratory scale packed bed column: mathematical model and experiment. Food Technol Biotechnol 48

  • Kozlowski CA, Walkowiak W (2002) Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes. Water Res 36:4870–4876

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  • Lalhruaitluanga H, Jayaram K, Prasad M, Kumar K (2010) Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. J Hazard Mater 175:311–318

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Leyva-Ramos R, Diaz-Flores PE, Aragon-Piña A, Mendoza-Barron J, Guerrero-Coronado RM (2005) Adsorption of cadmium (II) from an aqueous solution onto activated carbon cloth. Sep Sci Technol 40:2079–2094

    Article  CAS  Google Scholar 

  • Li Q, Wu S, Liu G, Liao X, Deng X, Sun D, Hu Y, Huang Y (2004) Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol 34:135–142

    Article  CAS  Google Scholar 

  • Liu Y, Sun X, Li B (2010) Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydr Polym 81:335–339

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y, Abali Y (2006) Cr (VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chem Eng J 119:61–68

    Article  CAS  Google Scholar 

  • Matheickal J, Yu Q (1997) Biosorption of lead (II) from aqueous solutions by Phellinus badius. Miner Eng 10:947–957

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1999) Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229

    Article  CAS  Google Scholar 

  • Mattuschka B, Straube G (1993) Biosorption of metals by a waste biomass. J Chem Technol Biotechnol 58:57–63

    Article  CAS  Google Scholar 

  • Özer A, Özer D (2003) Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229

    Article  CAS  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Veglio F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633

    Article  CAS  Google Scholar 

  • Paschoalini AL, Savassi LA, Arantes FP, Rizzo E, Bazzoli N (2019) Heavy metals accumulation and endocrine disruption in Prochilodus argenteus from a polluted neotropical river. Ecotoxicol Environ Saf 169:539–550

    Article  CAS  Google Scholar 

  • Prasad M, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110:277–283

    Article  CAS  Google Scholar 

  • Rahman MS, Sathasivam KV (2015) Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: the use of error functions for validation of isotherm and kinetics models. Biomed Res Int 2015:13

    Google Scholar 

  • Robinson T, Chandran B, Nigam P (2002) Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res 36:2824–2830

    Article  CAS  Google Scholar 

  • Saǧ Y, Özer D, Kutsal T (1995) A comparative study of the biosorption of lead (II) ions to Z. ramigera and R. arrhizus. Process Biochem 30:169–174

    Article  Google Scholar 

  • Saltalı K, Sarı A, Aydın M (2007) Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J Hazard Mater 141:258–263

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2008) Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–308

    Article  CAS  Google Scholar 

  • Sari A, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144:1–9

    Article  CAS  Google Scholar 

  • Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL (2006) Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interface Sci 300:100–104

    Article  CAS  Google Scholar 

  • Say R, Denizli A, Arıca MY (2001) Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70

    Article  CAS  Google Scholar 

  • Sdiri A, Higashi T, Jamoussi F, Bouaziz S (2012) Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manag 93:245–253

    Article  CAS  Google Scholar 

  • Singh K, Singh A, Hasan S (2006) Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001

    Article  CAS  Google Scholar 

  • Tunali S, Akar T, Özcan AS, Kiran I, Özcan A (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47:105–112

    Article  CAS  Google Scholar 

  • Tuzen M, Sari A, Mendil D, Soylak M (2009) Biosorptive removal of mercury (II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies. J Hazard Mater 169:263–270

    Article  CAS  Google Scholar 

  • Wang M, Liu R, Chen W, Peng C, Markert B (2018) Effects of urbanization on heavy metal accumulation in surface soils, Beijing. J Environ Sci 64:328–334

    Article  Google Scholar 

  • Yabanli M, Yozukmaz A, Sel F (2014) Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Braz Arch Biol Technol 57:434–440

    Article  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  CAS  Google Scholar 

  • Yang L, Chen JP (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour Technol 99:297–307

    Article  CAS  Google Scholar 

  • Yozukmaz A, Yabanli M, Sel F (2018) Heavy metal bioaccumulation in Enteromorpha intestinalis, (L.) Nees, a macrophytic algae: the example of Kadin Creek (Western Anatolia). Braz Arch Biol Technol 61

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Muhammad Salman.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, S.M., Ali, A., Khan, B. et al. Thermodynamic and kinetic insights into plant-mediated detoxification of lead, cadmium, and chromium from aqueous solutions by chemically modified Salvia moorcroftiana leaves. Environ Sci Pollut Res 26, 14339–14349 (2019). https://doi.org/10.1007/s11356-019-04611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04611-6

Keywords

Navigation