Skip to main content
Log in

RR2 dye adsorption to Hymenaea courbaril L. bark activated carbon associated with biofilm

  • Alternative Adsorbent Materials for Application in Processes Industrial
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study addressed the removal performance of RR2 from aqueous solutions in adsorption columns experiments by comparing the potential of activated carbon alone (ACA) and microbially inoculated (MIAC), prepared from barks of a largely available tree in Brazilian Cerrado biome, Hymenaea courbaril L. or “Jatobá,” presenting the kinetics, isotherms, breakthrough curves, and dissolved organic carbon removal. ACA presented strong interaction to RR2 dye, evidenced at the first 20 min when absorbance already attained 66.4%. The removal percentage gradually increased with time and the equilibrium occurred around 91.7% within 120 min. Langmuir model best fitted the isotherm data, indicating a maximum adsorption capacity of 4.068 mg g−1 for the amount of 0.5 g of adsorbent. The Langmuir’s model parameters KL, RL, and R2 corresponded to 0.0234 L mg−1, 0.4159, and 0.9663, respectively, indicating a favorable adsorption process (0 < RL < 1). The experiments in adsorption columns revealed maximum adsorption capacities of 14.38 and 11.43 mg g−1 for MIAC and ACA, respectively, where the microbial activity favorably retarded the adsorption breakpoint in approximately 20 min and enhanced the RR2 consumption in 25.8%. Effectiveness of DOC removal attained above 90% for both ACA and MIAC, reducing the content from 86.1 to 7.84 mg L−1 and 4.82 mg L−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abd ES, Salah H, Nachida KM, Djilali T, Tibor S, Klára H, László N (2016) Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-fenton reaction. Materials 9(6):428–439

    Google Scholar 

  • Araújo CST, Alves VN, Rezende HC, Almeida ILS, Assunção RMN, Tarley CRT, Segatelli MG, Coelho NMM (2010) Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents. Water Sci Technol 62:2198–2203

    Google Scholar 

  • Araújo DA, Curbelo FDS, Braga RM, Garnica AIC (2017) Remoção do óleo da água produzida utilizando carvão ativado comercial. Holos 8:12–31

    Google Scholar 

  • Baghapour MA, Dehghani M (2016) Evaluation of Fenton process in removal of direct red 81. J Health Sci Surveill Syst 4(1):14–21

    Google Scholar 

  • Bhatnagar A, Minocha AK (2010) Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids Surf B Biointerfaces 76:544–548

    CAS  Google Scholar 

  • Brazil (2005) CONAMA: Brazilian National Counselor of Environment Regulation N° 357. Access in 20 may 2015. Available in: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459

  • Brock TD, Madigan MT (1991) Biology of microorganisms. Prentice-Hall, New Jersey

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  • Cahan R, Stein M, Anker Y, Langzam Y, Nitzan Y (2013) Innovative utilization of coal bottom ash for bioremediation of toxic organic pollutants. Int Biodeterior Biodegradation 85:421–428

    CAS  Google Scholar 

  • Chen KM, Chu HC (2002) Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochem 37:595–600

    Google Scholar 

  • Chernicharo CAL (1997) Reatores anaeróbios: princípios do tratamento biológico de águas residuárias. Polytécnica, Belo Horizonte

  • Conceição V, Freire FB, Carvalho KQ (2013) Treatment of textile effluent containing indigo blue dye by a UASB reactor coupled with pottery clay adsorption. Acta Sci Technol 35(1):53–58

    Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    CAS  Google Scholar 

  • Da Silva A, Mariani VC, De Souza AAU, Souza SMAGU (2005) Numerical study of n-pentane separation using adsorption column. Braz Arch Biol Technol 48:267–274

    Google Scholar 

  • Da Silva RTS, Dervanoski A, Haupenthal LD, Souza SMAGU, Souza AAU, Da Luz C (2015) Simulação numérica e ensaios experimentais da remoção de Fe (III) da água para utilização nas indústrias alimentícias. Eng Sanit Ambient 20(4):653–663

    Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    CAS  Google Scholar 

  • Hafshejani MK, Ogugbue CJ, Morad N (2014) Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. 3 Biotech 4(6):605–619

    Google Scholar 

  • Kah M, Sigmund G, Xiao F, Hofmann T (2017) Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res 124:63–692

    Google Scholar 

  • Keller JU, Staudt R (2005) Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer, Boston, MA

    Google Scholar 

  • Lafrance P, Mazet M, Villessot D (1983) Bacterial growth on granular activated carbon. An examination by scanning electron microscopy. Water Res 17(10):1467–1470

    CAS  Google Scholar 

  • Lee YH, Pavlostathis SG (2004) Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res 38:1838–1852

    CAS  Google Scholar 

  • Ling CP, Ai I, Tan W, Lik L, Lim P (2016) Fixed-bed column study for adsorption of cadmium on oil palm shell-derived activated carbon. J Appl Sci Proc Eng 3(2):60–71

    Google Scholar 

  • McCabe WL, Smith JC, Harriott P (1993) Unit operations of chemical engineering. McGraw-Hill Science/Engineering/Math, USA

    Google Scholar 

  • Mousavi SA, Khashij M, Shahbazi P (2016) Adsorption isotherm study and factor affected on methylene blue decolorization using activated carbon powder prepared grapevine leaf. J Saf Promot Inj Prev 3(4):249–256

    Google Scholar 

  • Muthana SM, Ayad FA, Luma MA, Falah HH (2011) Zinc oxide assisted photocatalytic decolorization of reactive red 2 dye. Int J Chem Sci 9(3):969–979

    Google Scholar 

  • Onat TA, Gümüşdere HT, Güvenç A, Dönmez G, Mehmetoğlu U (2010) Decolorization of textile azo dyes by ultrasonication and microbial removal. Desalination 255:154–158

    CAS  Google Scholar 

  • Pereira L, Pereira R, Pereira MFR, van der Zee FP, Cervantes FJ, Alves MM (2010) Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. J Hazard Mater 183:931–939

    CAS  Google Scholar 

  • Rahmani AR, Zarrabi M, Samarghandi MR, Afkhami A, Ghaffari HR (2010) Degradation of azo dye Reactive Black 5 and acid orange 7 by Fenton-like mechanism. Iran J Chem Eng 7(1):87–94

    Google Scholar 

  • Reck IM, Paixão RN, Bergamasco R, Vieira MF, Vieira AMS (2018) Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod 171:85–97

    CAS  Google Scholar 

  • Salmani LR, Akram G, Saeid A, Maryam D, Nasrin N (2016) Removal of reactive red 141 dye from synthetic wastewater by electrocoagulation process: investigation of operational parameters. Iran J Health Saf Environ 3(1):403–411

    Google Scholar 

  • Seitenfus N, Ortigara ARC, Bento AP, Scaratti D, Sezerino PH (2007) Biofiltro aerado submerso como alternativa de tratamento do efluente do Núcleo Biotecnológico da Unoesc Campus de Videira. Evidência - Ciência e Biotecnologia 7(1):25–36

    Google Scholar 

  • Seyyed AM, Parastoo S, Parviz M, Seyyed MDN (2016) Investigation of the efficiency of UV/H2O2 process on the removal of rhodamine B from aqueous solutions. Intl Res J Appl Basic Sci 10(5):456–459

    Google Scholar 

  • Shakoor S, Nasar A (2016) Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low-cost adsorbent. J Taiwan Inst Chem Eng 66:154–163

    CAS  Google Scholar 

  • Shen J, Huang G, An C, Xin X, Huang C, Rosendahl S (2018) Removal of Tetrabromobisphenol A by adsorption on pinecone-derived activated charcoals: synchrotron FTIR, kinetics and surface functionality analyses. Bioresour Technol 247:812–820

    CAS  Google Scholar 

  • Shimp RJ, Pfaender FK (1982) Effects of surface area and flow rate on marine bacterial growth in activated carbon columns. Appl Environ Microbiol 44(2):471–477

    CAS  Google Scholar 

  • Slejko FL (1985) Adsorption technology. A step-by-step approach to process evaluation and application. Dekker, New York

    Google Scholar 

  • Smaranda C, Bulgariu D, Gavrilescu M (2009) An investigation of the sorption of acid orange 7 from aqueous solution onto soil. Environ Eng Manag J 8:1391–1402

    CAS  Google Scholar 

  • Sungthong R, Tauler M, Grifoll M, Ortega-Calvo JJ (2017) Mycelium-enhanced bacterial degradation of organic pollutants under bioavailability restrictions. Environ Sci Technol 51:11935–11942

    CAS  Google Scholar 

  • Tuty EA, Yourdan WA, Febrian M (2016) Degradation of reactive red 2 by Fenton and photo-Fenton oxidation processes. ARPN J Eng Appl Sci 11(8):5227–5231

    CAS  Google Scholar 

  • Vasques AR (2012) Caracterização de adsorventes obtidos por combustão e pirólise de lodo residual e aplicação no tratamento de efluentes têxteis. Tese de doutorado. Universidade Federal de Santa Catarina. Florianópolis. Access in: 25 may 2015. Available in: https://repositorio.ufsc.br/handle/123456789/100696

  • Vasques AR, Guelli USSMA, Weissenberg L, Souza AAU, Valle JAB (2011) Adsorção dos corantes RO16, RR2 e RR141 utilizando lodo residual da indústria têxtil. Eng San Ambient 16:245–252

    Google Scholar 

  • Vieira GEG, Nunes AP, Teixeira LF, Colen AGN (2014) Biomassa: uma visão dos processos de pirólise. Revista Liberato 15:168–177

    Google Scholar 

  • Viswanathan B, Indra P, Varadarajan TK (2009) Methods of activation and specific application of carbon materials. Chennai: Indian Institute of Technology Madras. Edition: E book, Publisher: NCCR IIT Madras

  • von Sperling M (2007) Basic principles of wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Wang L, Huang Z, Zhang M, Chai B (2012) Adsorption of methylene blue from aqueous solution on modified ACFs by chemical vapor deposition. Chem Eng J 189:168–174

    Google Scholar 

  • Yang Y-Y, Li Z-L, Wang G, Zhao X-P, Crowley DE, Zhao Y-H (2012) Computational identification and analysis of the key biosorbent characteristics for the biosorption process of reactive black 5 onto fungal biomass. PLoS One 7(3):1–9

    Google Scholar 

Download references

Acknowledgements

The authors thank LDPQ, LAMP, and LMC laboratory staff, from the University of Brasilia, for helping develop this study. Enormous appreciation goes to the editors and reviewers who took the time to review our work and make enriching suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Gualberto Zavarize.

Additional information

Responsible editor: Diane Purchase

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, A.R.V., Zanardi, G.B., Brum, S.S. et al. RR2 dye adsorption to Hymenaea courbaril L. bark activated carbon associated with biofilm. Environ Sci Pollut Res 26, 28524–28532 (2019). https://doi.org/10.1007/s11356-018-3786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3786-0

Keywords