Skip to main content
Log in

Highly dispersed core-shell iron nanoparticles decorating onto graphene nanosheets for superior Zn(II) wastewater treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study reports the preparation of highly dispersed nanoscale zerovalent iron (nZVI) with core-shell structure decorated onto graphene nanosheets (Gr-NS) to form nZVI-Gr-NS composite. Meanwhile, its excellent performance for concentrated Zn(II) wastewater treatment is also studied. The adsorption of Zn(II) onto nZVI-Gr-NS is well simulated by the pseudo-second-order model, which indicates the adsorption is the rate-controlling step. Moreover, the adsorption isotherms of Zn(II) on the nZVI-Gr-NS can fit well with the Langmuir model. The negative thermodynamic parameters (△GƟ, △HƟ, △SƟ) calculated from the temperature-dependent isotherms indicate that the sorption reaction of Zn(II) is an exothermic and spontaneous process. The high saturation magnetization (37.4 emu g−1) of the nZVI-Gr-NS makes separation of nZVI-Gr-NS-bound Zn(II) easily and quickly from aqueous solution. Most importantly, nZVI-Gr-NS composites not only remove Zn(II) but also spontaneously remove As, Se, and Cu ions from real smelting wastewater samples. This study provides a good solution for heavy metal removal in real wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  • I. Ali and V. K. Gupta, Das, Advances in water treatment by adsorption technology, Nat Protoc, 2006, 1, 2661–2667

  • Bhattacharya AK, Mandal SN, Das SK (2006) Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem Eng J 123:43–51

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  • Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507

    Article  CAS  Google Scholar 

  • Cheng G, Liu YL, Wang ZG, Zhang JL, Sun DH, Ni JZ (2012) The GO/rGO–Fe3O4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules. J Mater Chem 22:21998–22004

    Article  CAS  Google Scholar 

  • Cong HP, Ren XC, Wang P, Yu SH (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  CAS  Google Scholar 

  • Cui L, Zhu JY, Meng XM, Yin HS, Pan XP, Ai SY (2012) Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanospheres as a redox mediator for the electrochemical oxidation of nitrite. Sensor Actuat B-Chem 161:641–647

    Article  CAS  Google Scholar 

  • Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Gu C, Jia H, Li H, Teppen BJ, Boyd S (2010) Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ. Sci. Technol. 44:4258–4263

    Article  CAS  Google Scholar 

  • Guo J, Wang R, Tjiu WW, Pan J, Liu T (2012) Synthesis of Fe nanoparticles@graphene composites for environmental applications. J Hazard Mater 225-226:63–73

    Article  CAS  Google Scholar 

  • Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42:2600–2605

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Kalavathy H, Karthik B, Miranda LR (2010) Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies. Colloid surf B: Biointerfaces 78:291–302

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40:2045–2050

    Article  CAS  Google Scholar 

  • Kemp KG, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5:49–71

    Article  Google Scholar 

  • Khin M, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Kržišnik N, Mladenovič A, Škapin AS, Škrlep L, Ščančar J, Milačič R (2014) Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-edta and Zn(II)-citrate from aqueous solutions. Sci Total Environ 476-477:20–28

    Article  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  • Liu AR, Zhang W-X (2014) Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analyst 139:4512–4518

    Article  CAS  Google Scholar 

  • Liu AR, Liu J, Pan BC, Zhang W-X (2014a) Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Adv 4:57377–57382

    Article  CAS  Google Scholar 

  • Liu F, Yang J, Zuo J, Ma D, Gan L, Xie B, Wang P, Yang B (2014b) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26:1751–1762

    Article  CAS  Google Scholar 

  • Liu J, Liu A, Zhang W-X (2016) The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): aggregation, sedimentation, and reactivity with Ni(II) in water. Chem Engin J 303:268–274

    Article  CAS  Google Scholar 

  • Liu AR, Liu J, Zhang W-X (2017) Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J Hazard Mater 322:129–135

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2006) Adsorption of Zinc(II) from water with purified carbon nanotubes. Chem Engineer Sci 61:1138–1145

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2008) Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+, from aqueous solution. Chem Engineer J 139:462–468

    Article  CAS  Google Scholar 

  • Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36:5455–5461

    Article  CAS  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170

    Article  CAS  Google Scholar 

  • Memmert U (1987) Bioaccumulation of zinc in two freshwater organisms (Daphnia magna, Crustacea and Brachydanio rerio, Pisces). Water Res 21:99–106

    Article  CAS  Google Scholar 

  • Mu JB, Shao CL, Guo ZC, Zhang MY, Zhang ZY, Zhang P, Chen B, Liu YC (2012) In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity. J Mater Chem 22:1786–1793

  • Oren AH, Kaya A (2006) Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. J Hazard Mater 131:59–65

    Article  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:216–224

    Article  Google Scholar 

  • Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232:145–156

    Article  CAS  Google Scholar 

  • Shi LN, Zhang X, Chen ZL (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  Google Scholar 

  • Shi L-N, Zhou Y, Chen ZL, Megharaj M, Naidu R (2013) Simultaneous adsorption and degradation of Zn(2+) and Cu(2+) from wastewaters using nanoscale zero-valent iron impregnated with clays. Environ Sci Pollut Res 20:3639–3648

    Article  CAS  Google Scholar 

  • Suslick KS, Fang M, Hyeon TS (1996) Sonochemical synthesis of iron colloids. J Am Chem Soc 118:11960–11961

    Article  CAS  Google Scholar 

  • Tang ZH, Shen SL, Zhuang J, Wang X (2010) Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed 49:4603–4607

    Article  CAS  Google Scholar 

  • Tunali S, Akar T (2006) Zn(II) biosorption properties of Botrytis cinerea biomass. J Hazard Mater 131:137–145

    Article  CAS  Google Scholar 

  • Vilardi G, Palma LD, Verdone N (2018a) Heavy metals adsorption by banana peels micro-powder: equilibrium modeling by non-linear models. Chin J Chem Eng 26:455–464

    Article  Google Scholar 

  • Vilardi G, Mpouras T, Dermatas D, Verdone N, Polydera A, Palma LD (2018b) Nanomaterials application for heavy metals recovery from polluted water: the combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere 201:716–729

    Article  CAS  Google Scholar 

  • Vilardi G, Palma LD, Verdone N (2018c) On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. J Water Proc Engineer 22:109–122

    Article  Google Scholar 

  • Vilardi G, Ochando-Pulido JM, Stoller M, Verdone N, Palma LD (2018d) Fenton oxidation and chromium recovery from tannery wastewater by means of iron-based coated biomass as heterogeneous catalyst in fixed-bed columns. Chem Eng J 351:1–11

    Article  CAS  Google Scholar 

  • Vilardi G, Ochando-Pulido JM, Verdone N, Stoller M, Palma LD (2018e) On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: equilibrium study and chromium recovery. J Clean Prod 190:200–210

    Article  CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440

    Article  CAS  Google Scholar 

  • Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of As and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131

    Article  CAS  Google Scholar 

  • Xu M, Zhu J, Su H, Dong J, Ai S, Li R (2012) Electrochemical determination of methyl parathion using poly (malachite green)/graphene nanosheets–nafion composite film-modified glassy carbon electrode. J Appl Electrochem 42:509–516

    Article  CAS  Google Scholar 

  • Xvéronique M, Magalie B, Alain B (2006) Cadmium and zinc bioaccumulation and metallothionein in response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient. Chemosphere 65:609–617

    Article  Google Scholar 

  • Yan WL, Lien H-L, Koel BE, Zhang W-X (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci: Processes Impacts 15:63–77

    CAS  Google Scholar 

  • Yanagisawa H, Matsumoto Y, Machida M (2010) Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution. Appl Surf Sci 256:1619–1623

    Article  CAS  Google Scholar 

  • Yin H, Zhou Y, Meng X, Shang K, Ai S (2011) One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing. Biosens Bioelectron 30:112–117

    Article  CAS  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zheng T, Zhan J, He J, Day C, Lu Y, McPherson GL, Piringer G, John VT (2008) Reactivity characteristics of nanoscale zerovalent iron−silica composites for trichloroethylene remediation. Environ. Sci. Technol. 42:4494–4499

    Article  CAS  Google Scholar 

  • Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 46:977–985

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from the National Science Foundation of China (NSFC grants nos. 11475127, 41673096, 41772243, 51578396) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airong Liu.

Additional information

Responsible editor: Ioannis A. Katsoyiannis

Electronic supplementary material

ESM 1

(DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Huang, S., Zhou, W. et al. Highly dispersed core-shell iron nanoparticles decorating onto graphene nanosheets for superior Zn(II) wastewater treatment. Environ Sci Pollut Res 26, 806–815 (2019). https://doi.org/10.1007/s11356-018-3631-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3631-5

Keywords

Navigation