Skip to main content

Advertisement

Log in

Phytomanagement of trace metals in mangrove sediments of Hormozgan, Iran, using gray mangrove (Avicennia marina)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Trace elements (Zn, Cu, Pb, and Cd) in root and leaf tissues of the gray mangrove (Avicennia marina) and in corresponding sediment samples were studied. Samples were taken from the inflow/outflow points in two distinct habitats, i.e., the Hara Protected Area and the Azini Bay, of Hormozgan Province in south Iran. Heavy metal concentrations (μg g−1 of dry weight) in the sediments of the Hara Protected Area ranged from 16.0 to 68.0 for Pb, 15.0 to 52.0 for Zn, 9.0 to 27.0 for Cu, and 1.0 to 3.3 for Cd. In the Azini Bay, these concentrations ranged from 7.1 to 27.5 for Pb, 17.1 to 55.9 for Zn, 12.1 to 37.9 for Cu, and 0.2 to 2.3 for Cd. The accumulation trend of heavy metal concentrations in the roots of A. marina was in the order Pb (16.1) > Zn (15.8) > Cu (9.3) > Cd (1.3) μg g−1 of dry weight in the Hara Protected Area and in the order Zn (13.7) > Cu (9.4) > Pb (5.5) > Cd (0.6) μg g−1 of dry weight in the Azini Bay. The value of translocation factor (TLF) was smaller than 1 in both regions. It was estimated from 0.44 to 0.62 in the Hara Protected Area and from 0.51 to 1.01 in the Azini Bay. The enrichment coefficient for root (ECR) varied from 0.32 to 0.93 in the Hara Protected Area and from 0.32 to 0.51 in the Azini Bay. The ratio of heavy metals in leaves/sediments (ECL) also varied from 0.01 to 0.67 in the Hara Protected Area and from 0.01 to 0.47 in the Azini Bay. The enrichment coefficient for leaf (ECL) was always lower than ECR in both regions. Based on the above findings, A. marina can be regarded as an excluder for the heavy metals examined in this study, given its low efficiency in translocating and accumulating the heavy metals in the shoots. Apart from serving as a baseline for the study area, findings could be useful for mitigating heavy metal contamination in these sensitive ecosystems through possible phytomanagement using gray mangrove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahim G, Parker R (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  CAS  Google Scholar 

  • Achary MS, Satpathy K, Panigrahi S, Mohanty A, Padhi R, Biswas S, Prabhu R, Vijayalakshmi S, Panigrahy R (2017) Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control 72:232–243

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils. Springer, Dordrecht, The Netherlands, pp 11–50

    Chapter  Google Scholar 

  • Barla A, Shrivastava A, Majumdar A, Upadhyay MK, Bose S (2017) Heavy metal dispersion in water saturated and water unsaturated soil of Bengal delta region, India. Chemosphere 168:807–816

    Article  CAS  Google Scholar 

  • Birch GF, Chang CH, Lee JH, Churchill LJ (2013) The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney Estuary, Australia). Sci Total Environ 454–455:542–561

    Article  CAS  Google Scholar 

  • Cabrita MT, Padeiro A, Amaro E, dos Santos MC, Leppe M, Verkulich S, Hughes KA, Peter H-U, Canário J (2017) Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antarctica. Mar Pollut Bull 121:192–200

    Article  CAS  Google Scholar 

  • Dong Q, Xu PX, Wang ZL (2017) Differential cadmium distribution and translocation in roots and shoots related to hyper-tolerance between tall fescue and Kentucky bluegrass. Front Plant Sci 8:113

    Google Scholar 

  • Einollahipeer F, Khammar S, Sabaghzadeh A (2013) A study on heavy metal concentration in sediment and mangrove (Avicenia marina) tissues in Qeshm Island, Persian Gulf. J Novel Appl Sci 2:498–504

    Google Scholar 

  • El Nemr A, El-Said GF, Ragab S, Khaled A, El-Sikaily A (2016) The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt. Chemosphere 165:369–380

    Article  CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Boil 12:259–266

    Article  CAS  Google Scholar 

  • Harborne JB (2014) Introduction to ecological biochemistry. Academic Press, London, UK

    Google Scholar 

  • Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649

    Article  CAS  Google Scholar 

  • Jian L, Chongling Y, Daolin D, Haoliang L, Jingchun L (2017) Accumulation and speciation of Cd in Avicennia marina tissues. Int J Phytoremediat 2:1000–1006

    Article  CAS  Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2016) Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Appl Ecol Environ Res 14:367–382

    Article  Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2018) Phytomanagement of radionuclides and heavy metals in mangrove sediments of Pattani Bay, Thailand, using Avicennia marina and Pluchea indica. Mar Pollut Bull 127:320–333

    Article  CAS  Google Scholar 

  • Kim R-Y, Yoon J-K, Kim T-S, Yang JE, Owens G, Kim K-R (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37:1041–1061

    Article  CAS  Google Scholar 

  • Lu L, Tian S, Yang X, Wang X, Brown P, Li T, He Z (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (1999) Zinc distribution and excretion in the leaves of grey mangrove, Avicennia marina (Forsk.) Vierh. Environ Exp Bot 41:167–175

    Article  CAS  Google Scholar 

  • MacFarlane G, Burchett M (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59

    Article  CAS  Google Scholar 

  • MacFarlane G, Burchett M (2002) Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar Environ Res 54:65–84

    Article  CAS  Google Scholar 

  • MacFarlane G, Pulkownik A, Burchett M (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environ Pollut 123:139–151

    Article  CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  Google Scholar 

  • Machado W, Silva-Filho E, Oliveira R, Lacerda L (2002) Trace metal retention in mangrove ecosystems in Guanabara Bay, SE Brazil. Mar Pollut Bull 44:1277–1280

    Article  CAS  Google Scholar 

  • Masnavi MR, Amani N, Ahmadzadeh A (2016) Ecological landscape planning and design strategies for mangrove communities (Hara forests) in South-Pars Special Economic Energy Zone, Asalouyeh-Iran. Environ Nat Resour Res 6:44–57

    Google Scholar 

  • Mattina MI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378

    Article  CAS  Google Scholar 

  • Mondal P, Reichelt-Brushett AJ, Jonathan MP, Sujitha SB, Sarkar SK (2018) Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environ Sci Pollut Res 25:5681–5699

    Article  CAS  Google Scholar 

  • Mousavi SR (2011) Zinc in crop production and interaction with phosphorus. Aust J Basic Appl Sci 5:1503–1509

    CAS  Google Scholar 

  • Nachev M, Sures B (2016) Environmental parasitology: parasites as accumulation bioindicators in the marine environment. J Sea Res 113:45–50

    Article  Google Scholar 

  • Naji A, Ismail A (2012) Sediment quality assessment of Klang Estuary, Malaysia. Aquat Ecosyst Health Manag 15:287–293

    Article  CAS  Google Scholar 

  • Nath B, Birch G, Chaudhuri P (2014a) Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney Estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination. Sci Total Environ 472:1010–1022

    Article  CAS  Google Scholar 

  • Nath B, Chaudhuri P, Birch G (2014b) Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicol Environ Saf 107:284–290

    Article  CAS  Google Scholar 

  • Nazli MF, Hashim NR (2010) Heavy metal concentrations in an important mangrove species, Sonneratia caseolaris, in Peninsular Malaysia. Environ Asia 3:50–55

    Google Scholar 

  • Nirmal Kumar IJ, Sajish PR, Nirmal Kumar R, Basil G, Shailendra V (2011) An assessment of the accumulation potential of Pb, Zn and Cd by Avicennia marina (Forssk.) Vierh. in Vamleshwar mangroves, Gujarat, India. Not Sci Biol 3:36–40

    Article  Google Scholar 

  • Parvaresh H, Abedi Z, Farshchi P, Karami M, Khorasani N, Karbassi A (2011) Bioavailability and concentration of heavy metals in the sediments and leaves of grey mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran. Biol Trace Elem Res 143:1121–1130

    Article  CAS  Google Scholar 

  • Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediat 10:133–160

    Article  CAS  Google Scholar 

  • Ramos e Silva CA, Da Silva A, De Oliveira S (2006) Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Mar Chem 99:2–11

    Article  CAS  Google Scholar 

  • Sahu K (2016) Heavy metal pollution of air, water and soil—a review. SGAT Bull 16

  • Salem ZB, Laffray X, Al-Ashoor A, Ayadi H, Aleya L (2017) Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. J Environ Sci 54:56–68

    Article  Google Scholar 

  • Sasmaz A, Obek E, Hasar H (2008) The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol Engin 33:278–284

    Article  Google Scholar 

  • Sasmaz M, Sasmaz A (2017) The accumulation of strontium by native plants grown on Gumuskoy mining soils. J Geochem Explor 181:236–242

    Article  CAS  Google Scholar 

  • Sękara A, Poniedzialek M, Ciura J, Jędrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    Google Scholar 

  • Sharifan HR, Davari A (2010) Bioaccumulation and distribution of heavy metals in gray mangrove (Avicennia marina): case study of the tropical areas of Persian Gulf. World Food System. Proceedings of ‘World Food System: a contribution from Europe’, Tropentag 2010, September 14–16, Zurich, Switzerland, p. 211

  • Sharma S, Rana S, Thakkar A, Baldi A, Murthy R, Sharma R (2016) Physical, chemical and phytoremediation technique for removal of heavy metals. J Heavy Met Tox Dis 1:2

    Google Scholar 

  • Shirvani Mahdavi E, Khajeh Rahimi A, Vakili Amini H (2012) Pb and Cd accumulation in Avicennia marina from Qeshm Island. Iran J Fish Sci 11:867–875

    Google Scholar 

  • Singh S (2012) Phytoremediation: a sustainable alternative for environmental challenges. Int J Green Herb Chem 1:133–139

    CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  • Subramanian A, Vannucci M (2004) Status of Indian mangroves: pollution status of the Pichavaram mangrove area, south-east coast of India. Mangrove management and conservation. United Nations University Press, Tokyo, Japan, pp 59–75

    Google Scholar 

  • Usman ARA, Alkredaa RS, Al-Wabel MI (2013) Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Saf 97:263–270

    Article  CAS  Google Scholar 

  • Vardanyan LG, Ingole BS (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int 32:208–218

    Article  CAS  Google Scholar 

  • Willemsen PWJM, Horstman E, Borsje BW, Friess D, Dohmen-Janssen CM (2016) Sensitivity of the sediment trapping capacity of an estuarine mangrove forest. Geomorphology 273:189–201

    Article  Google Scholar 

  • Yim M, Tam N (1999) Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activities. Mar Pollut Bull 39:179–186

    Article  CAS  Google Scholar 

  • Zheng WZ, Chen X, Lin P (1997) Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Mar Ecol Prog Ser 159:293–301

    Article  CAS  Google Scholar 

  • Zhou Y-W, Zhao B, Peng Y-S, Chen G-Z (2010) Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Mar Pollut Bull 60:1319–1324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saber Ghasemi or Christos A. Damalas.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Siavash Moghaddam, S., Rahimi, A. et al. Phytomanagement of trace metals in mangrove sediments of Hormozgan, Iran, using gray mangrove (Avicennia marina). Environ Sci Pollut Res 25, 28195–28205 (2018). https://doi.org/10.1007/s11356-018-2684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2684-9

Keywords

Navigation