Skip to main content

Advertisement

Log in

Microbial fuel cell and membrane bioreactor coupling system: recent trends

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Membrane bioreactor (MBR) and microbial fuel cell (MFC) are new technologies based on microbial process. MBR takes separation process as the core to achieve the high efficient separation and enrichment the beneficiation of microbes during the biological treatment. MFC is a novel technology based on electrochemical process to realize the mutual conversion between biomass energy and electric energy, in order to solve the problems of serious membrane fouling and low efficiency of denitrification in membrane bioreactor, the low power generation efficiency, and unavailability of bioelectric energy of MFC. In recent years, MFC-MBR coupling system emerged. It can effectively mitigate the membrane fouling and reduce the excess sludge production. Simultaneously, the electricity can be used effectively. The new coupling system has good prospects for development. In this paper, we summarized the research progresses of the two kinds of coupling systems in recent years and analyzed the coupling structure and forms. Based on the above, the future development fields of the MFC-MBR coupling system were prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akamatsu K, Lu W, Sugawara T (2010) Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Res 44:825–830

    Article  CAS  Google Scholar 

  • Aslam M, Charfi A (2017) Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Eng J 307:897–913

    Article  CAS  Google Scholar 

  • Aslam M, Charfi A, Lesage G (2017) Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling. Chem Eng J 307:897–913

    Article  CAS  Google Scholar 

  • Ayyaru S, Dharmalingam S (2014) Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal Chim Acta 818:15–22

    Article  CAS  Google Scholar 

  • Azeredo J, Visser J, Oliveira R (1999) Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surf B-Biointerfaces 14:141–148

    Article  CAS  Google Scholar 

  • Bai RB, Leow HF (2002) Microfiltration of activated sludge wastewater: the effect of system operation parameters. Sep Purif Technol 29:189–198

    Article  CAS  Google Scholar 

  • Bani-Melhem K, Elektorowicz M (2010) Development of a novel submerged membrane electro-bioreactor (SMEBR): performance for fouling reduction. Environ Sci Technol 44:3298–3304

    Article  CAS  Google Scholar 

  • Borea L, Puig S, Monclus H (2017) Microbial fuel cell technology as a downstream process of a membrane bioreactor for sludge reduction. Chem Eng J 326:222–230

    Article  CAS  Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  Google Scholar 

  • Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613

    Article  CAS  Google Scholar 

  • Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a bod sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859

    Article  CAS  Google Scholar 

  • Chen SH, Wang JQ, Xia XL (2012) Simultaneous removal of phenol and nitrate from wastewater using a dual chamber microbial fuel cell. J Environ Eng 6:891–895 1859

    CAS  Google Scholar 

  • Chen L, Gu YS, Cao CQ (2014) Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Res 50:114–123

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873

    Article  Google Scholar 

  • Cheng SA, Xing DF, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  CAS  Google Scholar 

  • Cheng BA, Wang J, Liu WB, Bi FH, Jia H, Zhang HW (2017) Membrane fouling reduction in a cost effective integrated system of microbial fuel cell and membrane bioreactor. Water Sci Technol 76:653–661

    Article  CAS  Google Scholar 

  • Di L, Curtis M, Head S (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 13:3145–3154

    Google Scholar 

  • Di SJ, Z W, Wang DZ, Tian Y (2012) Performance and membrane fouling characteristics in a membrane bioreactor coupled with microbial fuel cell system. Chinese Journal of Environmental Engineering 8:1368–1372

    Google Scholar 

  • Ding WJ, Cheng SA, Li LY (2017) Effective swine wastewater treatment by combining microbial fuel cells with flocculation. Chemosphere 182:567–573

    Article  CAS  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Advances 25:464–482

    Article  CAS  Google Scholar 

  • Feng SS, Cai X, Yu GY (2017) Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor. Bioresour Technol 244:560–568

    Article  CAS  Google Scholar 

  • Franks AE, Nevin KP (2010) Microbial fuel cells: a current review. Energies 5:899–919

    Article  CAS  Google Scholar 

  • Ghangrekar MM, Shinde VB (2007) Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol 98:2879–2885

    Article  CAS  Google Scholar 

  • Gomez-Acata S, Vital-Jacome M, Pérez-Sandoval MV (2018) Microbial community structure in aerobic and fluffy granules formed in a sequencing batch reactor supplied with 4-chlorophenol at different settling times. J Hazard Materials 342:606–616

    Article  CAS  Google Scholar 

  • Hasan SW, Elektorowicz M, Oleszkiewicz JA (2012) Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR). Bioresour Technol 120:199–205

    Article  CAS  Google Scholar 

  • Hassan H, Jin B, Donner E (2018) Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: microbial consortia could make differences. Chem Eng J 332:647–657

    Article  CAS  Google Scholar 

  • Herzbery M, Elimelech M (2007) Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J Mem Sci 295:11–20

    Article  CAS  Google Scholar 

  • Ishii S, Suzuki S, Yamanaka Y (2017) Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources. Bioelectro 117:74–82

    Article  CAS  Google Scholar 

  • Ishizaki S, K T, H M (2016a) Impact of anodic respiration on biopolymer production and consequent membrane fouling. Envir Sci Technol 50:9515–9523

    Article  CAS  Google Scholar 

  • Ishizaki S, Terada K, Miyake H, Okabe S (2016b) Impact of anodic respiration on biopolymer production and consequent membrane fouling. Environ Sci Technol 50:9515–9523

    Article  CAS  Google Scholar 

  • Jia H, Yang G, Wang J (2016) Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor. Bioresour Technol 218:286–293

    Article  CAS  Google Scholar 

  • Jiang Q, Ngo HH, Nehiem LD (2018) Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system for micropollutants removal from municipal wastewater. Bioresour Technol 247:1228–1232

    Article  CAS  Google Scholar 

  • Kim K-Y, Chae K-J, Yang E-T (2013) High-quality effluent and electricity production from non-CEM based flow-through type microbial fuel cell. Chem Eng J 218:19–23

    Article  CAS  Google Scholar 

  • Kim KY, Yang WL, Ye YL, Logan BE (2016) Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresour Technol 208:58–63

    Article  CAS  Google Scholar 

  • Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720

    Article  CAS  Google Scholar 

  • Le-Clech P, Chen V, Fane T (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 84:17–53

    Article  CAS  Google Scholar 

  • Lefebvre O, Uzabiaga A, Chang IS (2011) Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration. Appl Microbiol Biotechnol 89:259–270

    Article  CAS  Google Scholar 

  • Li H, Tian Y, Su XY, Wang CN (2013) Investigation on SMP and EPS in membrane bioreactor combined with microbial fuel cells. China Environ Sci 33:49–55

    Google Scholar 

  • Li J, Ge Z, He Z (2014a) Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment. J Chem Technol and Biotechnol 89:1330–1336

    Article  CAS  Google Scholar 

  • Li YJ, Liu LF, Liu JD (2014b) PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (Alizarin Reds) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system. Desalination 349:94–101

    Article  CAS  Google Scholar 

  • Li Y, Liu L,Yang F, (2015) Performance of carbon fiber cathode membrane with C–Mn–Fe–O catalyst in MBR–MFC for wastewater treatment. J Membrane Sci 484:27–34

  • Li YH, Liu LF, Yang FL (2016) High flux carbon fiber cloth membrane with thin catalyst coating integrates bio-electricity generation in wastewater treatment. J Membrane Sci 505:130–137

    Article  CAS  Google Scholar 

  • Li YH, Liu LF, Yang FL (2017a) Destruction of tetracycline hydrochloride antibiotics by Fe OOH/Ti O2 granular activated carbon as expanded cathode in low-cost MBR/MFC coupled system. J Membrane Sci 525:202–209

    Article  CAS  Google Scholar 

  • Li LP, Tian Y, Zhang J (2017b) Insight into the roles of worm reactor on wastewater treatment and sludge reduction in anaerobic-anoxic-oxic membrane bioreactor (A(2)O-MBR): performance and mechanism. Chem Eng J 330:718–726

    Article  CAS  Google Scholar 

  • Li YH, Sun JQ, Liu LF (2017c) A composite cathode membrane with CoFe2O4 -rGO/PVDF on carbon fiber cloth: synthesis and performance in a photocatalysis-assisted MFC-MBR system. Environmental Science-Nano 4:335–345

    Article  CAS  Google Scholar 

  • Liu L, Liu JD, Gao B, Yang F (2012a) Minute electric field reduced membrane fouling and improved performance of membrane bioreactor. Separation and Purification Technol 86:106–112

    Article  CAS  Google Scholar 

  • Liu L, Liu J, Gao B, Yang F, Chellam S (2012b) Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole. J. Membr Sci 394:202–208

    Article  CAS  Google Scholar 

  • Liu J, Shen X, Zhao YP, Chen L (2013a) Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance. Ind Eng Chem Res 52:18392–18400

    Article  CAS  Google Scholar 

  • Liu JD, Liu LF, Gao B (2013b) Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation. J Membrane Sci 430:196–202

    Article  CAS  Google Scholar 

  • Liu JD, Tian C, Jia XL, Xiong JX (2017) The brewery wastewater treatment and membrane fouling mitigation strategies in anaerobic baffled anaerobic/aerobic membrane bioreactor. Biochem Eng J 127:53–59

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R (2006) Microbial fuel cells: methodology and technology. Envir Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Malaeb L, Katuri KP, Logan BE (2013) A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol 47:11821–11828

  • Meng FG, Chae SR, Drews A, Kraume M, Shin H, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512

    Article  CAS  Google Scholar 

  • Nagaokaka H (1999) Nitrogen removal by a submerged membrane separation activated sludge process. Water Sci Technol 39:107–114

    Article  Google Scholar 

  • Neoh CH, Noor ZZ, Mutamim NSA, Lim CK (2016) Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems. Chem Eng J 283:582–594

    Article  CAS  Google Scholar 

  • Remmas N, Melidis P, Zerva I (2017) Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances. Bioresour Technol 238:48–56

    Article  CAS  Google Scholar 

  • Rodriguez-Perez S, Fermoso FG, Arnaiz C (2016) Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge. Water Sci Technol 74:595–605

    Article  CAS  Google Scholar 

  • Rosenberger S, Kruger U, Witzig R (2002) Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water. Water Res 36:413–420

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, George J (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Sarkar B, Pal S, Ghosh TB, De S, Das GS (2008) A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition. J Membrane Sci 311:112–120

    Article  CAS  Google Scholar 

  • Savda S, Dominguez B, Vanbroekhoven K (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206

    Article  CAS  Google Scholar 

  • Shen X, Zhao YP, Chen L (2013) The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance. Biofouling 29:991–1003

    Article  CAS  Google Scholar 

  • Sheng GI, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Advances 28:882–894

    Article  CAS  Google Scholar 

  • Shimizu Y, Okuno Y, Uryu K (1996) Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment. Water Res 30:2385–2392

    Article  CAS  Google Scholar 

  • Su X, Tian Y, Sun Z, Lu Y, Li Z (2013a) Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling. Biosens Bioelectron 49:92–98

    Article  CAS  Google Scholar 

  • Su XY, Tian Y, Sun ZC, Lu YB, Li ZP (2013b) Performance of a combined system of microbial fuel cell and membrane bioreactor: waste water treatment, sludge reduction, energy recovery and membrane fouling. Biosens Bioelectron 49:92–98

    Article  CAS  Google Scholar 

  • Teck HC, Loong KS, Sun DD (2009) Influence of a prolonged solid retention time environment on nitrification/denitrification and sludge production in a submerged membrane bioreactor. Desalination 245:28–43

    Article  CAS  Google Scholar 

  • Tian Y, Li H, Li LP, Su XY (2015) In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation. Biosens Bioelectron 64:189–195

    Article  CAS  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    Article  CAS  Google Scholar 

  • Visvanathan C, Ben Aim R, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Env Sci Technol 30:1–48

    Article  CAS  Google Scholar 

  • Wang SQ, Liang ZW (2016) Acetate-triggered granular sludge floatation in methanogenic bioreactors. Water Res 107:93–101

    Article  CAS  Google Scholar 

  • Wang YK, Sheng GP (2011) Development of a novel bioelectrochemical membrane reactor for wastewater treatment. Enviro Sci Technol 45:9256–9261

    Article  CAS  Google Scholar 

  • Wang YP, Liu XW, Li WW (2012) A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 98:230–235

    Article  CAS  Google Scholar 

  • Wang J, Zheng YW, Jia H, Zhang HW (2013) In situ investigation of processing property in combination with migration of microbial fuel cell and tubular membrane bioreactor. Bioresour Technol 149:163–168

    Article  CAS  Google Scholar 

  • Wang ZW, Ma JX, Tang CY (2014) Membrane cleaning in membrane bioreactors: a review. J Membrane Sci 468:276–307

    Article  CAS  Google Scholar 

  • Wang J, Bi FH, Zhang HW (2016) Evaluation of energy-distribution of a hybrid microbial fuel cell membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment. Bioresour Technol 20:420–425

    Article  CAS  Google Scholar 

  • Wang D, Guo F, Wu YH (2017) Technical, economic and environmental assessment of coagulation/filtration tertiary treatment processes in full-scale wastewater treatment plants. J Cleaner Production 170:1185–1194

    Article  CAS  Google Scholar 

  • Wang YZ, Zhang HM, Li H (2018) Integrating sludge microbial fuel cell with inclined plate settling membrane filtration for electricity generation, efficient sludge reduction and high wastewater quality. Chem Eng J 331:152–160

    Article  CAS  Google Scholar 

  • Wu B, Wang R (2017). The roles of bacteriophages in membrane-based water and wastewater treatment process: a review. Water Res 120-132

  • Wu Y, Yang Q, Huu NN, Zhang HW (2017) Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode. Chen Eng J 316:315–322

    Article  CAS  Google Scholar 

  • Xiao K, Xu Y, Liang S, Lei T, Sun J, Wen X (2014) Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Front Environ Sci Eng 8(6):805–819

    Article  CAS  Google Scholar 

  • Xie S, Chen Y, Liang P, Huang X (2010) Simultaneous electricity generation and nitrification in a microbial fuel cell with aerobic biocathode. Environ Sci 31:1601–1605

    CAS  Google Scholar 

  • Xu L, Zhang GQ, Yuan GE (2015) Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system. RSC Advances 5:22533–22543

  • Yamamoto K, Win KM (1991) Tannery wastewater treatment using a sequencing batch membrane reactor. Water Sci Technol 23:1639–1648

    Article  CAS  Google Scholar 

  • Yang W, Cicek N, Ilg J (2006) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. Membrane Sci 270:201–211

    Article  CAS  Google Scholar 

  • Zhang QY, Singh S (2017) Fouling reduction using adsorbents/flocculants in a submerged anaerobic membrane bioreactor. Bioresour Technol 239:226–235

    Article  CAS  Google Scholar 

  • Zhang DJ, Lu PL, Long TR (2005) The integration of methanogenesis with simultaneous nitrification and denitrification in a membrane bioreactor. Process Biochem 40:541–547

    Article  CAS  Google Scholar 

  • Zhang BG, Zhao HH, Zhou HZ, Zhou SG (2009) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100:5687–5693

    Article  CAS  Google Scholar 

  • Zhang BG, Zhang J, Yang Q, Feng CP (2012) Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). Bioresour Technol 124:1–7

    Article  CAS  Google Scholar 

  • Zhou MH, Wang HY, Daniel J, Hassett DJ (2013) Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol Biotechnol 88:508–518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51578375, No. 51638011), China Postdoctoral Science Foundation (2017M621081), and Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China (Grant No. IRT-17R80). The research collaboration between Tianjin Polytechnic University and University of Technology Sydney is grateful. We also thank for the support of China Scholarship Council (No. 201609345007, No. 201709345009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Jia or Jie Wang.

Additional information

Responsible editor: Bingcai Pan

Electronic supplementary material

Table S1

(DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Jia, H., Wang, J. et al. Microbial fuel cell and membrane bioreactor coupling system: recent trends. Environ Sci Pollut Res 25, 23631–23644 (2018). https://doi.org/10.1007/s11356-018-2656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2656-0

Keywords

Navigation