Skip to main content
Log in

Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pyrolysis of biodiesel at high temperatures may result in the formation of transient and stable free radicals immobilized on particulate emissions. Consequently, free radicals adsorbed on particulates are believed to be precursors for health-related illnesses such as cancer, cardiac arrest, and oxidative stress. This study explores the nature of free radicals and particulate emissions generated when Croton megalocarpus biodiesel is pyrolyzed at 600 °C in an inert environment of flowing nitrogen at a residence time of 0.5 s at 1 atm. The surface morphology of thermal emissions were imaged using a field emission gun scanning electron microscope (FEG SEM) while the radical characteristics were investigated using an electron paramagnetic resonance spectrometer (EPR). A g-value of 2.0024 associated with a narrow ∆Hp-p of 3.65 G was determined. The decay rate constant for the radicals was low (1.86 × 10−8 s−1) while the half-life was long ≈ 431 days. The observed EPR characterization of Croton megalocarpus thermal particulates revealed the existence of free radicals typical of those found in coal. The low g-value and low decay rate constant suggests that the free radicals in particulates are possibly carbon-centered. The mechanistic channel for the formation of croton char from model biodiesel component (9-dodecenoic acid, methyl ester) has been proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adounkpe J, Khachatryan L, Dellinger B (2008) Radicals from the gas-phase pyrolysis of hydroquinone: 1. Temperature dependence of the total radical yield. Energy Fuel 22(5):2986–2990

    Article  CAS  Google Scholar 

  • Barreto G, Madureira D, Capani F, Aon-Bertolino L, Saraceno E, Alvarez-Giraldez LD (2009) The role of catechols and free radicals in benzene toxicity: an oxidative DNA damage pathway. Environ Mol Mutagen 50(9):771–780

    Article  CAS  Google Scholar 

  • Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13(3):135–160

    Article  CAS  Google Scholar 

  • Chhiti Y, Salvador S, Commandré JM, Broust F (2012) Thermal decomposition of bio-oil: focus on the products yields under different pyrolysis conditions. Fuel 102:274–281

    Article  CAS  Google Scholar 

  • Chu S, Subrahmanyam AV, Huber GW (2013) The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chem 15(1):125–136

    Article  CAS  Google Scholar 

  • Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  CAS  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  CAS  Google Scholar 

  • Dellinger B, D'Alessio A, D'Anna A, Ciajolo A, Gullett B, Henry H, Lucas D (2008) Report: combustion byproducts and their health effects: summary of the 10th international congress. Environ Eng Sci 25(8):1107–1114

    Article  CAS  Google Scholar 

  • Dellinger B, Pryor WA, Cueto R, Squadrito GL, Hegde V, Deutsch WA (2001) Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol 14(10):1371–1377

    Article  CAS  Google Scholar 

  • Eaton GR, Eaton SS, Barr DP, Weber RT (2010) Quantitative EPR. Springer Science & Business Media

  • Gehling W, Khachatryan L, Dellinger B (2014) Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM(2.5). Environ Sci Technol 48(8):4266–4272

    Article  CAS  Google Scholar 

  • Hu J, Shen D, Xiao R, Wu S, Zhang H (2012) Free-radical analysis on thermochemical transformation of lignin to phenolic compounds. Energy Fuel 27(1):285–293

    Article  CAS  Google Scholar 

  • Jebet A, Kibet J, Ombaka L, Kinyanjui T (2017) Surface bound radicals, char yield and particulate size from the burning of tobacco cigarette. Chem Cent J 11(1):1–8

    Article  Google Scholar 

  • Jiang G, Nowakowski DJ, Bridgwater AV (2010) Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuel 24(8):4470–4475

    Article  CAS  Google Scholar 

  • Kafuku G, Mbarawa M (2010) Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 89(9):2556–2560

    Article  CAS  Google Scholar 

  • Kafuku G, Lam MK, Kansedo J, Lee KT, Mbarawa M (2010) Croton megalocarpus oil: a feasible non-edible oil source for biodiesel production. Bioresour Technol 101(18):7000–7004

    Article  CAS  Google Scholar 

  • Khachatryan L, Asatryan R, Dellinger B (2003) Development of expanded and core kinetic models for the gas phase formation of dioxins from chlorinated phenols. Chemosphere 52(4):695–708

    Article  CAS  Google Scholar 

  • Keiblinger KM, Zehetner F, Mentler A, Zechmeister-Boltenstern S (2018) Biochar application increases sorption of nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil. Environ Sci Pollut Res 25(11):11173–11177

    Article  CAS  Google Scholar 

  • Khachatryan L, Asatryan R, McFerrin C, Adounkpe J, Dellinger B (2010) Radicals from the gas-phase pyrolysis of catechol. 2. Comparison of the pyrolysis of catechol and hydroquinone. J Phys Chem Lett A 114(37):10110–10116

    CAS  Google Scholar 

  • Khachatryan L, Vejerano E, Lomnicki S, Dellinger B (2011) Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environ Sci Technol 45(19):8559–8566

    Article  CAS  Google Scholar 

  • Kibet J, Khachatryan L, Dellinger B (2012) Molecular products and radicals from pyrolysis of lignin. Environ Sci Technol 46(23):12994–13001

    Article  CAS  Google Scholar 

  • Kibet J, Kurgat C, Limo S, Rono N, Bosire J (2016) Kinetic modeling of nicotine in mainstream cigarette smoking. Chem Cent J 10(1):1–9

    Article  CAS  Google Scholar 

  • Kim KH, Bai X, Cady S, Gable P, Brown RC (2015) Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization. ChemSusChem 8(5):894–900

    Article  CAS  Google Scholar 

  • Kim S, Chmely SC, Nimlos MR, Bomble YJ, Foust TD, Paton RS, Beckham GT (2011) Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J Phys Chem Lett 2(22):2846–2852

    Article  CAS  Google Scholar 

  • Kipkore W, Wanjohi B, Rono H, Kigen G (2014) A study of the medicinal plants used by the Marakwet community in Kenya. J Ethnobiol Ethnomed 10(1):24

    Article  Google Scholar 

  • Kurgat C, Kibet J, Cheplogoi P (2016) Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke. Chem Cent J 10(1):1–11

    Article  CAS  Google Scholar 

  • Lee J, Kim KH, Kwon EE (2017) Biochar as a catalyst. Renew Sust Energ Rev 77:70–79

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Melkior T, Jacob S, Gerbaud G, Hediger S, Le Pape L, Bonnefois L, Bardet M (2012) NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92(1):271–280

    Article  CAS  Google Scholar 

  • Meng J, Smirnova TI, Song X, Moore A, Ren X, Kelley S, Park S, Tilotta D (2014) Identification of free radicals in pyrolysis oil and their impact on bio-oil stability. RSC Adv 4(56):29840–29846

    Article  CAS  Google Scholar 

  • Mili M, Gupta A, Katiyar V (2017) Designing of poly (l-lactide)–nicotine conjugates: mechanistic and kinetic studies and thermal release behavior of nicotine. ACS Omega 2(9):6131–6142

    Article  CAS  Google Scholar 

  • Moridani MY, Siraki A, Chevaldina T, Scobie H, O’Brien PJ (2004) Quantitative structure toxicity relationships for catechols in isolated rat hepatocytes. Chem Biol Interact 147(3):297–307

    Article  CAS  Google Scholar 

  • Petrakis L, Grandy DW (1981) Free radicals in coals and coal conversion. 3. Investigation of the free radicals of selected macerals upon pyrolysis. Fuel 60(2):115–119

    Article  CAS  Google Scholar 

  • Porterfield JP, Bross DH, Ruscic B, Thorpe JH, Nguyen TL, Baraban JH, Stanton JF, Daily JW, Ellison GB (2017) Thermal decomposition of potential ester biofuels. Part i: methyl acetate and methyl butanoate. J Phy Chem A 121(24):4658–4677

    Article  CAS  Google Scholar 

  • Salatino A, Salatino MLF, Negri G (2007) Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). Braz Chem Soc 18(1):11–33

    Article  CAS  Google Scholar 

  • Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR (2004) Characterization of chars from pyrolysis of lignin. Fuel 83(11):1469–1482

    Article  CAS  Google Scholar 

  • Shen Y, Zhao P, Shao Q (2014) Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater 188:46–76

    Article  CAS  Google Scholar 

  • Shin E-J, Nimlos MR, Evans RJ (2001) A study of the mechanisms of vanillin pyrolysis by mass spectrometry and multivariate analysis. Fuel 80(12):1689–1696

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Varela Milla O, Rivera EB, Huang W-J, Chien C, Wang Y-M (2013) Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J Soil Sci Plant Nutr 13(2):251–266

    Google Scholar 

  • Varuvel EG, Mrad N, Tazerout M, Aloui F (2012) Experimental analysis of biofuel as an alternative fuel for diesel engines. Appl Energy 94:224–231

    Article  CAS  Google Scholar 

  • White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J AnalAppl Pyr 91(1):1–33

    Article  CAS  Google Scholar 

  • Wood BM, Kirwan K, Maggs S, Meredith J, Coles SR (2015) Study of combustion performance of biodiesel for potential application in motorsport. J Clean Prod 93:167–173

    Article  CAS  Google Scholar 

  • Wu D, Roskilly AP, Yu H (2013) Croton megalocarpus oil-fired micro-trigeneration prototype for remote and self-contained applications: experimental assessment of its performance and gaseous and particulate emissions. Interface focus 3(1):20120041

    Article  Google Scholar 

Download references

Acknowledgements

VN wishes to thank the University of KwaZulu-Natal (UKZN), the National Research Foundation (NRF), UKZN nanotechnology platform for funding this research. Egerton University is also appreciated for facilitating the success of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua K. Kibet.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosonik, B.C., Kibet, J.K., Ngari, S.M. et al. Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel. Environ Sci Pollut Res 25, 24807–24817 (2018). https://doi.org/10.1007/s11356-018-2546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2546-5

Keywords

Navigation