Skip to main content

Advertisement

Log in

Stop eating plastic, molecular signaling of bisphenol A in breast cancer

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Breast cancer is the second most common fatal cancer in women. Developing a breast cancer is a multi-factorial and hormonal-dependent process, which may be triggered by many risk factors. An endocrine disrupting substance known as bisphenol A (BPA), that is used greatly in the manufacture of plastic products, was suggested as a possible risk factor for developing breast cancer. BPA has a strong binding affinity to non-classical membrane estrogen receptors like estrogen-related and G protein-coupled (GPER) receptors. Based on animal and in vitro studies, results showed a link between BPA exposure and increased incidence of breast cancer. BPA has the ability to alter multiple molecular pathways in cells namely, G protein-coupled receptor (GPER) pathway, estrogen-related receptor gamma (ERRγ) pathway, HOXB9 (homeobox-containing gene) pathway, bone morphogenetic protein 2 (BMP2) and (BMP4), immunoregulatory cytokine disturbance in the mammary gland, EGFR-STAT3 pathway, FOXA1 in ER-breast cancer cells, enhancer of zeste homolog 2 (EZH2), and epigenetic changes. Thus, the aforementioned alterations cause undesired gene stimulation or repression that increase risk of developing breast cancer. So, restricting exposure to BPA should be considered to aid in lowering the risk of developing breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Rahman WM, Moustafa YM, Amed BO, Mostafa RM (2012) Endocrine disruptors and breast cancer risk-time to consider the environment. Asian Pac J Cancer Prev 13:5937–5946

    Article  Google Scholar 

  • Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS (2015) Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans R Soc Lond Ser B Biol Sci 370(1673):20140219

    Article  Google Scholar 

  • Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Carpino A, Oprea TI, Prossnitz ER, Musti AM, Ando S, Maggiolini M (2007) G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 67:1859–1866

    Article  CAS  Google Scholar 

  • Arnold SM, Clark KE, Staples CA, Klecka GM, Dimond SS, Caspers N, Hentges SG (2013) Relevance of drinking water as a source of human exposure to bisphenol A. J Expo Sci Environ Epidemiol 23:137–144

    Article  CAS  Google Scholar 

  • Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD (2001) EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 19:1155–1160

    CAS  Google Scholar 

  • Bhan A, Hussain I, Ansari KI, Kasiri S, Bashyal A, Mandal SS (2013) Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J Mol Biol 425:3707–3722

    Article  CAS  Google Scholar 

  • Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS (2014) Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 141:160–170

    Article  CAS  Google Scholar 

  • Biedermann S, Tschudin P, Grob K (2010) Transfer of bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem 398:571–576

    Article  CAS  Google Scholar 

  • Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, Barr DB, Sathyanarayana S, Lanphear BP (2011) Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect 119:131–137

    Article  CAS  Google Scholar 

  • Brody JG, Rudel RA (2003) Environmental pollutants and breast cancer. Environ Health Perspect 111:1007–1019

    Article  CAS  Google Scholar 

  • Brunben A, Hubner J, Katalinic A, Noftz MR, Waldmann A (2016) Breastcancer epidemiology. Management of breast diseases 125–137

  • Burnstock G, Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal 9:491–540

    Article  CAS  Google Scholar 

  • Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, Huttner K, Hauser R (2009) Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect 117:639–644

    Article  CAS  Google Scholar 

  • Cao XL, Corriveau J, Popovic S (2010) Bisphenol A in canned food products from Canadian markets. J Food Prot 73:1085–1089

    Article  CAS  Google Scholar 

  • Chapellier M, Bachelard-Cascales E, Schmidt X, Clement F, Treilleux I, Delay E, Jammot A, Menetrier-Caux C, Pochon G, Besancon R, Voeltzel T, de Caron FC, Caux C, Blay JY, Iggo R, Maguer-Satta (2015) Disequilibrium of BMP2 levels in the breast stem cell niche launches epithelial transformation by overamplifying BMPR1B cell response. Stem Cell Rep 4:239–254

    Article  CAS  Google Scholar 

  • Clement F, Xu X, Donini CF, Clement A, Omarjee S, Delay E, Treilleux I, Fervers B, Le RM, Cohen PA, Maguer-Satta V (2017) Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death Differ 24:155–166

    Article  CAS  Google Scholar 

  • Cooper JE, Kendig EL, Belcher SM (2011) Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 85:943–947

    Article  CAS  Google Scholar 

  • Crozier-Haynes M (2010) Keeping BPA from baby: why the endocrine disruptor bisphenol-A should be banned from products for infants and children. Colo J Int’l Envtl L&Pol’y 21:167

    Google Scholar 

  • Deb P, Bhan A, Hussain I, Ansari KI, Bobzean SA, Pandita TK, Perrotti LI, Mandal SS (2016) Endocrine disruptingchemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene 590:234–243

    Article  CAS  Google Scholar 

  • Dodds LW (1936) Synthetic estrogenic agents without the phenanthrene nucleus. Nature 137:996

    Article  CAS  Google Scholar 

  • Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155

    Article  CAS  Google Scholar 

  • Drozdz K, Wysokinski D, Krupa R, Wozniak K (2011) Bisphenol A-glycidyl methacrylate induces a broad spectrum of DNA damage in human lymphocytes. Arch Toxicol 85:1453–1461

    Article  CAS  Google Scholar 

  • Fischer C, Mamillapalli R, Goetz LG, Jorgenson E, Ilagan Y, Taylor HS (2016) Bisphenol A (BPA) exposure in utero leads to immunoregulatory cytokine dysregulation in the mouse mammary gland: a potential mechanism programming breast cancer risk. Horm Cancer 7:241–251

    Article  CAS  Google Scholar 

  • Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ (2010) Bisphenol A and related compounds in dental materials. Pediatrics 126:760–768

    Article  Google Scholar 

  • Geens T, Neels H, Covaci A (2009) Sensitive and selective method for the determination of bisphenol-A and triclosan in serum and urine as pentafluorobenzoate-derivatives using GC-ECNI/MS. J Chromatogr B Analyt Technol Biomed Life Sci 877(31):4042–4046. https://doi.org/10.1016/j.jchromb.2009.10.017

  • Geens T, Goeyens L, Kannan K, Neels H, Covaci A (2012) Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ 435:30–33

    Article  CAS  Google Scholar 

  • Genuis SJ, Beesoon S, Birkholz D, Lobo RA (2012) Human excretion of bisphenol A: blood, urine, and sweat (BUS) study. J Environ Public Health 2012:185731

    Google Scholar 

  • Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, Safe S, McDonnell DP, Gaido KW (1998) Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol 142:203–214

    Article  CAS  Google Scholar 

  • Haishima Y, Hayashi Y, Yagami T, Nakamura A (2001) Elution of bisphenol-A from hemodialyzers consisting of polycarbonate and polysulfone resins. J Biomed Mater Res 58:209–215

    Article  CAS  Google Scholar 

  • Hanaoka T, Kawamura N, Hara K, Tsugane S (2002) Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med 59:625–628

    Article  CAS  Google Scholar 

  • Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS (2011) FOXA1 is a key determinantof estrogen receptor function and endocrine response. Nat Genet 43:27–33

    Article  CAS  Google Scholar 

  • Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    Article  CAS  Google Scholar 

  • Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors. Steroids 65:227–251

    Article  CAS  Google Scholar 

  • Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919

    Article  CAS  Google Scholar 

  • Klotz DM, Beckman BS, Hill SM, McLachlan JA, Walters MR, Arnold SF (1996) Identification of environmental chemicals with estrogenic activity using a combination of in vitro assays. Environ Health Perspect 104:1084–1089

    Article  CAS  Google Scholar 

  • Konieczna A, Rutkowska A, Rachon D (2015) Health risk of exposure to bisphenol A (BPA). Rocz Panstw Zakl Hig 66:5–11

    CAS  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870

    Article  CAS  Google Scholar 

  • Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, Champagne FA (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci 110:9956–9961

    Article  Google Scholar 

  • Kuroda N, Kinoshita Y, Sun Y, Wada M, Kishikawa N, Nakashima K, Makino T, Nakazawa H (2003) Measurement of bisphenol A levels in human blood serum and ascitic fluid by HPLC using a fluorescent labeling reagent. J Pharm Biomed Anal 30(6):1743–1749

  • Lee YJ, Ryu HY, Kim HK, Min CS, Lee JH, Kim E, Nam BH, Park JH, Jung JY, Jang DD, Park EY, Lee KH, Ma JY, Won HS, Im MW, Leem JH, Hong YC, Yoon HS (2008) Maternal and fetal exposure to bisphenol A in Korea. Reprod Toxicol 25(4):413–419. https://doi.org/10.1016/j.reprotox.2008.05.058

  • Ma R, Sassoon DA (2006) PCBs exert an estrogenic effect through repression of the Wnt7a signaling pathway in the female reproductive tract. Environ Health Perspect 114:898–904

  • Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254:179–186

    Article  CAS  Google Scholar 

  • Masuyama H, Hiramatsu Y (2004) Involvement of suppressor for Gal 1 in the ubiquitin/proteasome-mediated degradation of estrogen receptors. J Biol Chem 279:12020–12026

    Article  CAS  Google Scholar 

  • Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata S, Kimura M, Shimohigashi Y (2007) Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma. J Biochem 142:517–524

    Article  CAS  Google Scholar 

  • Matthews JB, Twomey K, Zacharewski TR (2001) In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol 14:149–157

    Article  CAS  Google Scholar 

  • Mehta RJ, Jain RK, Leung S, Choo J, Nielsen T, Huntsman D, Nakshatri H, Badve S (2012) FOXA1 is an independent prognostic marker for ER-positive breast cancer. Breast Cancer Res Treat 131:881–890

    Article  CAS  Google Scholar 

  • Park SH, Kim KY, An BS, Choi JH, Jeung EB, Leung PC, Choi KC (2009) Cell growth of ovarian cancer cells is stimulated by xenoestrogens through an estrogen-dependent pathway, but their stimulation of cell growth appears not to be involved in the activation of the mitogen-activated protein kinases ERK-1 and p38. J Reprod Dev 55:23–29

    Article  CAS  Google Scholar 

  • Pupo M, Pisano A, Lappano R, Santolla MF, De Francesco EM, Abonante S, Rosano C, Maggiolini M (2012) Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect 120:1177–1182

    Article  CAS  Google Scholar 

  • Ramsey TL, Risinger KE, Jernigan SC, Mattingly KA, Klinge CM (2004) Estrogen receptor beta isoforms exhibit differences in ligand-activated transcriptional activity in an estrogen response element sequence-dependent manner. Endocrinology 145:149–160

    Article  CAS  Google Scholar 

  • Routledge EJ, White R, Parker MG, Sumpter JP (2000) Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem 275:35986–35993

    Article  CAS  Google Scholar 

  • Roy JR, Chakraborty S, Chakraborty TR (2009) Estrogen-like endocrine disrupting chemicals affecting puberty in humans—a review. Med Sci Monit 15:RA137–RA145

    CAS  Google Scholar 

  • Samuelsen M, Olsen C, Holme JA, Meussen-Elholm E, Bergmann A, Hongslo JK (2001) Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line. Cell Biol Toxicol 17:139–151

    Article  CAS  Google Scholar 

  • Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA (2016) A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 182:159–167

    Google Scholar 

  • Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–11620

    Article  CAS  Google Scholar 

  • Song Y, Washington MK, Crawford HC (2010) Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 70:2115–2125

    Article  CAS  Google Scholar 

  • Song H, Zhang T, Yang P, Li M, Yang Y, Wang Y, Du J, Pan K, Zhang K (2015) Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRgamma signals. Toxicol in Vitro 30:521–528

    Article  CAS  Google Scholar 

  • Suzuki T, Nakagawa Y, Takano I, Yaguchi K, Yasuda K (2004) Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ Sci Technol 38:2389–2396

    Article  CAS  Google Scholar 

  • Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179

    Article  CAS  Google Scholar 

  • Tilghman SL, Bratton MR, Segar HC, Martin EC, Rhodes LV, Li M, McLachlan JA, Wiese TE, Nephew KP, Burow ME (2012) Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 7:e32754

    Article  CAS  Google Scholar 

  • Vandentorren S, Zeman F, Morin L, Sarter H, Bidondo ML, Oleko A, Leridon H (2011) Bisphenol-A and phthalates contamination of urine samples by catheters in the Elfe pilot study: implications for large-scale biomonitoring studies. Environ Res 111:761–764

    Article  CAS  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  Google Scholar 

  • Vogel SA (2009) The politics of plastics: the making and unmaking of bisphenol A “safety”. Am J Public Health 99(Suppl 3):S559–S566

    Article  Google Scholar 

  • Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24:178–198

    Article  CAS  Google Scholar 

  • Ye L, Bokobza SM, Jiang WG (2009) Bone morphogenetic proteins in development and progression of breast cancer and therapeutic potential (review). Int J Mol Med 24:591–597

    Article  CAS  Google Scholar 

  • Zhang W, Fang Y, Shi X, Zhang M, Wang X, Tan Y (2012) Effect of bisphenol A on the EGFR-STAT3 pathway in MCF-7 breast cancer cells. Mol Med Rep 5:41–47

    Article  CAS  Google Scholar 

  • Zhang XL, Wang HS, Liu N, Ge LC (2015) Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals. Arch Biochem Biophys 585:10–16

    Article  CAS  Google Scholar 

Download references

Funding

This review did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randa Mohamed Mostafa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafei, A., Matbouly, M., Mostafa, E. et al. Stop eating plastic, molecular signaling of bisphenol A in breast cancer. Environ Sci Pollut Res 25, 23624–23630 (2018). https://doi.org/10.1007/s11356-018-2540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2540-y

Keywords

Navigation