Skip to main content

Advertisement

Log in

Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, low-thermal technology was used to treat the mercury contaminated farmland soil from a chemical plant in Guizhou Province, China. A series of field planting experiments were also aimed at determining the content of total and methyl-Hg in crop plants after thermal treatment. The results showed that the mercury concentration in soils was reduced about 70% from 255.74 mg/kg to 80.63 mg/kg when treated at 350 °C for 30 min in engineering-scale experiments, and the treated soil retained most of its original soil. Organic-bound and residual mercury in treated soil were reduced by 64.1 and 56.4% by means of a sequential extraction procedure, respectively. The total and methyl-mercury concentrations in crops decreased significantly, and the degree of soil mercury accumulation to crop roots has been reduced significantly. The total Hg concentrations in potato and corn were lower than the mercury tolerance limits for food in China, and the Hg concentration of radish was close to the limit. The technology provides a more sustainable remediation method for treating mercury-contaminated farmland soil in future engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano DC (2001) Mercury. In: Springer (ed) Trace elements in the terrestrial environments, New York, pp 411–458

  • Akagi H, Nishimura H (1991) Speciation of Mercury in the Environment. Advances in Mercury Toxicology. Springer, US, pp.53–76

  • Biester H, Scholz C (1997) Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions. Environ Sci Technol 31:233–239

    Article  CAS  Google Scholar 

  • Chang TC, Yen JH (2006) On-site mercury-contaminated soils remediation by using thermal desorption technology. J Hazard Mater 128:208–217

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Díez S (2009) Human health effects of methyl mercury exposure. Rev Environ Contam Toxicol 198:111–132

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179(2):318–333

    Article  CAS  Google Scholar 

  • El-begearmi MM, Sunde ML, Ganter HE (1977) A mutual protective effect of mercury and selenium in Japanese quail. Poult Sci 56(1):313–322

    Article  CAS  Google Scholar 

  • Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622

    Article  CAS  Google Scholar 

  • Fitzgerald WF (1995) Is mercury increasing in the atmosphere? The need for an atmosphere mercury network (AMNET). Water Air Soil Pollut 80(1–4):245–254

    Article  CAS  Google Scholar 

  • Frescholtz TF, Gustin MS, Schorran DE, Fernandez GCJ (2003) Assessing the source of mercury in foliar tissue of quaking aspen. Environ Toxicol Chem 22:2114–2119

    Article  CAS  Google Scholar 

  • Godbold DL (1991) Mercury-induced root damage in spruce seedlings. Water Air Pollution 56(1):823–831

    Article  CAS  Google Scholar 

  • Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356(1–3):112–124

    Article  CAS  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Qu L, Faganeli J, Drobne D (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. The Sci Total Environ 304:231–256

    Article  CAS  Google Scholar 

  • Huang Y, Hseu Z, Hsi H (2011) Influences of thermal decontamination on mercuryremoval, soil properties, and repartitioning of coexisting heavy metals. Chemosphere 84:1244–1249

    Article  CAS  Google Scholar 

  • Jiang G, Shi J, Feng X (2006) Mercury pollution in China. An overview of the past and current sources of the toxic metal. Environ Sci Technol 40(12):3673–3678

    Article  Google Scholar 

  • Kiyono M, Oka Y, Sone Y, Nakamura R, Sato MH, Sakabe K, Pan-Hou H (2013) Bacterial heavy metal transporter MerC increases mercury accumulation in Arabidopsis thaliana. Biochem Eng J 71(1):19–24

    Article  CAS  Google Scholar 

  • Kunkel AM, Seibert JJ, Elliott LJ, Kelley R, Katz LE, Pope GA (2006) Remediation of elemental mercury using in situ thermal desorption. Environ Sci Technol 40:2384–2389

    Article  CAS  Google Scholar 

  • Lindberg SE, Jackson DR, Huckabee JW, Janzen SA, Levin MJ, Lund JR (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J Environ Qual 8(4):572–578

    Article  CAS  Google Scholar 

  • Millán R, Esteban E, Zornoza P, Sierra MJ (2013) Could an abandoned mercury mine area be cropped? Environ Res 125:150–159

    Article  CAS  Google Scholar 

  • Millán R, Schmid T, Sierra MJ, Carrasco-Gil S, Villadóniga M, Rico C, Sánchez Ledesma DM, Díaz Puente FJ (2011) Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl Geochem 26(2):174–181

    Article  CAS  Google Scholar 

  • Millhollen AG, Gustin MS, Obrist D (2006) Foliar mercury accumulation and exchange for three tree species. Environ Sci Technol 40(19):6001–6006

    Article  CAS  Google Scholar 

  • Navarro A, Cañadas I, Martínez D, Rodriguez J, Mendoza JL (2009) Application of solar thermal desorption to remediation of mercury contaminated soils. Sol Energy 83(8):1405–1414

    Article  CAS  Google Scholar 

  • Palinka LA, Sholupov SE, Mashyanov NR, Durn G (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys Discuss 10(13):5951–5964

    Article  CAS  Google Scholar 

  • Piao H, Bishop PL (2006) Stabilization of mercury-containing wastes using sulfide. Environ Pollut 139(3):498–506

    Article  CAS  Google Scholar 

  • Qian J, Zhang L, Chen H, Niu Y (2009) Ming Hou distribution of mercury pollution and its source in the soils and vegetables in Guilin Area, China. Bull Environ Contam Toxicol 83(6):920–925

    Article  CAS  Google Scholar 

  • Qu L, Fu S, Liu P (2004) A study on the soil improvement polluted by mercury. Journal of Guizhou Normal University (Natural Sciences) 22:49–51 (in Chinese)

    CAS  Google Scholar 

  • Rahimi M, Farhadir R, Mehdizadeh R (2013) Phytoremediation: using plants to clean up contaminated soils with heavy metals. Int J Agri Res Rev 3:148–152

    Google Scholar 

  • Robles I, Lakatos J, Scharek P, Planck Z, Hernández G, Solís S, et al (2014) Characterization and remediation of soils and sediments polluted with mercury: occurrence, transformations, environmental considerations and San Joaquin's Sierra Gorda Case

  • Schmid T, Millán R, Vera R, Tallos A, Recreo F, Quejido AJ, Sánchez DM, Fernández M (2003) The distribution of mercury in a characterized soil affected by mining activities, in: ConSoil 8th International FZK/TNO. Conference on Contaminated soil (ed), Gent, Belgium

  • Shen Z, Zhang J, Qu L, Dong Z, Zheng S, Wang W (2009) A modified EK methodwith an I/I2 lixiviant assisted and approaching cathodes to remedy mercury contaminated field soils. Environ Geol 57(6):1399–1407

    Article  CAS  Google Scholar 

  • Sierra C, Menéndezaguado JM, Afif E, Carrero M, Gallego JR (2011) Feasibility study on the use of soil washing to remediate the As-Hg contamination at anancient mining and metallurgy area. J Hazard Mater 196:93–100

    Article  CAS  Google Scholar 

  • Sierra MJ, Millã nR, López FA, Alguacil FJ, Cañadas I (2016) Sustainable remediation of mercury contaminated soils by thermal desorption. Environ Sci Pollut Res 23:4898–4907

    Article  CAS  Google Scholar 

  • Sierra MJ, Rodríguez-Alonso J, Millan R (2012) Impact of the lavender rhizosphere on themercury uptake in field conditions. Chemosphere 89(11):1457–1466

    Article  CAS  Google Scholar 

  • Smolinska B, Rowe S (2015) The potential of Lepidium sativum L. for phytoextraction of Hg-contaminated soil assisted by thiosulphate. J Soils Sediments 15(2):393–400

    Article  CAS  Google Scholar 

  • Stein ED, Cohen Y, Winer AM (1996) Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol 26(1):1–43

    Article  CAS  Google Scholar 

  • Tahmasbian I, Nasrazadani A (2012) Soil electerokinetic remediation and its effects on soil microbial activity-a review. Afr J Microbiol Res 6:2233–2238

    Google Scholar 

  • Terefe T, Mariscal-Sancho I, Peregrina F, Espejo R (2008) Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 143:273–280

    Article  CAS  Google Scholar 

  • Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304:209–214

    Article  CAS  Google Scholar 

  • Wang J, Feng X, Anderson CWN, Qiu G, Ping L, Bao Z (2011) Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil - Results from a greenhouse study. J Hazard Mater 186(1):119–127

    Article  CAS  Google Scholar 

  • Wang LX, Hu XR, Tan ZY (2002) Correlations between mercury and selenium in organisms. Chongqing Environmental Science 24(2):73–75

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xing HF, Gao BD, Fan MS, Bai YS (2012) Studies on the effects of selenium (Se) absorption, distribution and selenium (Se) reaction of potato. Acta Agriculturae Boreali-Sinica 27(6):213–218 (in Chinese)

    Google Scholar 

  • Zhang X, Li F, Xu D (2012) Removal of POPs pesticides from soil by thermal desorption and its effect on physicochemical properties of the soil. Chin J Environ Eng 6(4):1381–1386

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 41463013) and the Qiankehe of China [2016] Zhicheng No. 2804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liya Qu.

Additional information

Responsible editor: Severine Le Faucheur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Yu, Z., Zhang, J. et al. Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil. Environ Sci Pollut Res 25, 24135–24142 (2018). https://doi.org/10.1007/s11356-018-2387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2387-2

Keywords

Navigation