Skip to main content
Log in

Can we use Cd-contaminated macrophytes for biogas production?

  • Global toxicity assessment: chemicals, environmental samples, and analytical methods
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Aside from the ability of plants to remove domestic-industrial wastewater contaminants from various types of water, macrophytes can also serve as an alternative source of energy. The goal of the present study was to test the viability of biogas production using aquatic macrophyte species—Eichhornia crassipes and Pistia stratiotes—contaminated with cadmium (Cd) after the phytoremediation process. The plants were transferred to a nutrient solution contaminated with 0.8 mg L−1of Cd. The experiment was set up in a 2 × 3 factorial scheme with the presence or absence of Cd and three phytoremediation times (20, 40, or 60 days) using P. stratiotes followed by an additional treatment consisting of P. stratiotes + E. crassipes for 20 days. The acute and chronic effects of bioassays with the microcrustacean Daphnia similis were used to evaluate the ability of the macrophytes to remove toxicity by phytoremediation. The viability test of biogas production after phytoremediation was evaluated using micro-biodigesters. According to the results, at least 60 days of phytoremediation are necessary to remove/remediate the Cd present in the contaminated solution. The metal did not influence the macrophytes’ methanogenic activity, showing that these macrophytes can be used for biogas/methane production. The combination of Pistia stratiotes with Eichhornia crassipes is a good alternative to reduce phytoremediation time, but for 20 days of testing, the presence of Eichhornia crassipes reduces the biogas production/CH4. However, it is believed that if the digestion time is extended, this effect can be minimized. The phytoremediation time indicated that Pistia stratiotes must remain at least 60 days to remove/remediate the Cd present in the contaminated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al Imam FI, Khan Z, Sarkar MM, Ali S (2013) Development of Biogas Processing from Cow dung, Poultry waste, and Water Hyacinth. Int J Nat Appl Science 2:13–17

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91:869–881

  • Andrade JCM, Tavares SRL, Mahler CF (2007) Fitorremediação: o uso de plantas na melhoria da qualidade ambiental. Ed. Oficina de textos, São Paulo 176 p

    Google Scholar 

  • APHA AWWA (1998) WPCF Standard Methods for examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

  • Aurangzeb N, Nisa S, Bibi Y, Javed F, Hussain F (2014) Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz J Chem Eng 31:881–886. https://doi.org/10.1590/0104-6632.20140314s00002734

    Article  Google Scholar 

  • Barros Regina Mambeli (2012) Tratado Sobre Resíduos Sólidos: gestão, uso e sustentabilidade. Rio de Janeiro: Interciência; Minas Gerais: Acta

  • Barua VBA, Kalamdhad S (2016) Water hyacinth to biogas: a review. Pollut Res 35(3):491–501

    Google Scholar 

  • Bharti S, Banerjee TK (2013) Bioassay analysis of efficacy of phytoremediation in decontamination of coal mine effluent. Ecotoxicol Environ Saf 92:312–319

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: A review. Bioresource Technol 99(10):4044–4064

  • El-Shinnawi MM, Alaa El-Din MN, El-Shimi SA, Badawi MA (1989) Biogas production from crop residues and aquatic weeds. Resour Conserv Recycl 3(1):33–45

  • Fawzy MA et al (2012) Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess 184(3):1753–1771

  • Hidaka T, Arai S, Okamoto S, Uchida T (2013) Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces. Bioresource Technol 130:667–672. https://doi.org/10.1016/j.biortech.2012.12.068.

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Agricultural Experimental Station 32 p

  • Iannicelli L A. Reaproveitamento Energético do biogás de uma indústria cervejeira. 2008, 83f. Dissertação de mestrado em Engenharia Mecânica. Universidade de Taubaté. Taubaté, São Paulo, 2008.

  • Koyama M, Yamamoto S, Ishikawa K, Ban S, Toda T (2017) Inhibition of anaerobic digestion by dissolved lignin derived from alkaline pre-treatment of an aquatic macrophyte. Chem Eng J 311:55–62

    Article  CAS  Google Scholar 

  • LABIOGAS (2013) Laboratório de Biogás do Parque Tecnológico de Itaipu - PTI. Disponível em: http://www.hidroinformatica.org/index.php/br/conheca-o-cih/parceiros/plataforma-itaipu-de-energiasrenovaveis/labiogas. Accessed em: 20 jun. 2017.

  • Martelo J, Lara-Borrero JA (2012) Floating macrophytes on the wastewater treatment: a state of the art review. Ing Cienc 8(15):221–243

    Article  Google Scholar 

  • Martínez FS, Franceschini MC, Poi A (2013) Preferencia alimentaria de Neochetina eichhorniae (Coleoptera: Curculionidae) en plantas acuáticas de diferente valor nutritivo. Rev Col Entomol 39(1):81–87

    Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24:7921–7937. https://doi.org/10.1007/s11356-016-8357-7

    Article  CAS  Google Scholar 

  • O’Sullivan C, Rounsefell B, Grinham A, Clarke W, Udy J (2010) Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba caroliniana) and salvinia (Salvinia molesta). Ecol Eng 36:1459–1468. https://doi.org/10.1016/j.ecoleng.2010.06.027

    Article  Google Scholar 

  • Pantawong R, Chuanchai A, Thipbunrat P, Unpaprom Y, Ramaraj R (2015) Experimental Investigation of Biogas Production from Water Lettuce, Pistia stratiotes L. Emerg Life Sci Res 1:41–46

  • Pereira BFF et al (2011) Cadmium availability and accumulation by lettuce and rice. Rev Bras Ciênc Solo 35(2):645–654

  • Pereira FJ et al (2014) Lead tolerance of water hyacinth (Eichhornia crassipes Mart. – (Pontederiaceae) as defined by anatomical and physiological traits. An Acad Bras Ciênc 86(3):1423–1433

  • Qiong P, Wei C, Lamei W, Lianyang B (2017) The uptake, accumulation, and toxic effects of cadmium in barnyardgrass (Echinochloa crus-galli). Pol J Environ Stud 26:779–784. https://doi.org/10.15244/pjoes/65780

    Article  CAS  Google Scholar 

  • Razak ASBA, Wahid ZBA, Zakaria IB, Said MIBM, Sulaiman SB, Halim HBA (2013) Treatment of industrial wastewater at Gebeng area using Eichhornia crassipes sp. (water hyacinth), Pistia stratiotes sp. (water lettuce) and Salvinia molesta sp. (giant salvinia). Adv Environ Biol 7:3802–3807

    Google Scholar 

  • Rezania et al (2015) The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sust Energ Rev 41:943–954

    Article  Google Scholar 

  • Ribeiro EM, Barros RM, Santos IFS, Sampaio LC, Santos TV, Silva FGB, Silva APM, Freitas JVR (2016) Power generation potential in posture aviaries in Brazil in the context of a circular economy. Sustainable Energy Technologies and Assessments 18:153–163

    Article  Google Scholar 

  • Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107

    Article  Google Scholar 

  • Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23(3):137–154

  • Sharma S, Singh B, Manchanda VK (2014) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22(2):946–962. https://doi.org/10.1007/s11356-014-3635-8

    Article  CAS  Google Scholar 

  • Silva SA et al (2013) Reproductive, cellular, and anatomical alterations in pistia stratiotes L. plants exposed to cadmium. Water Air Soil Pollut 224:1465

    Article  Google Scholar 

  • Sinha S, Mukherjee SK (2009) Pseudomonas Aeruginosa kucd1, a possible candidate for cadmium bioremediation. Braz J Microbiol 40:655–662

    Article  CAS  Google Scholar 

  • Souza SNM (2016) Manual de geração de energia elétrica a partir do biogás no meio rural. Dissertação. Universidade Estadual do Oeste do Paraná

  • Sultana R, Kobayashi K (2011) Potential of barnyard grass to remediate arsenic-contaminated soil. Weed Biol Manag 11(1):12–17

    Article  CAS  Google Scholar 

  • Thomaz SM, Bini LMA (1999) Expansão das macrófitas aquáticas e implicações para o manejo de reservatórios: um estudo na represa de Itaipu. In: Henry R (ed) Ecologia de reservatórios: estrutura, função e aspectos sociais. Fundibio, Botucatu, pp 599–625

    Google Scholar 

  • United States Environmental Protection Agency (2007) Method 3051 A: microwave assisted acid digestion of sediments, sludges, soils and oils. USEPA, Washington

    Google Scholar 

  • Van Houten BH, Roest K, Tzeneva VA, Dijkman H, Smidt H, Stams AJ (2006) Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res 40:553–560. https://doi.org/10.1016/j.watres.2005.12.004

    Article  CAS  Google Scholar 

  • Zhang H, Tian Y, Wang L, Zhang L, Dai L (2013) Ecophysiological characteristics and biogas production of cadmium-contaminated crops. Bioresour Technol 146:628–636. https://doi.org/10.1016/j.biortech.2013.07.148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the following people:

• IX Engenharia Santos for providing the GEM5000® apparatus.

• Frigorífico Frivasa for supplying the inoculums.

• CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for providing the following scholarship: PNPD post-doctoral program in environment and water resources (MEMARH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katiúcia Dias Fernandes.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, K.D., Cañote, S.J.B., Ribeiro, E.M. et al. Can we use Cd-contaminated macrophytes for biogas production?. Environ Sci Pollut Res 26, 27620–27630 (2019). https://doi.org/10.1007/s11356-018-2318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2318-2

Keywords

Navigation