Skip to main content
Log in

Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1–100 g l−1), maximal protease production was observed at 30 g l−1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l−1), CaCl2, or MgCl2 (10 mmol l−1) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH4Cl (1 g l−1) resulted in less apparent negative effects on protease production, whereas peptone (2 g l−1) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH4Cl (0.5–4.5 g l−1) on protease production and feather degradation, FB30 supplementation with peptone and NH4Cl (0.5–1.1 g l−1) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernal C, Vidal L, Valdivieso E, Coello N (2003) Keratinolytic activity of Kocuria rosea. World J Microbiol Biotechnol 19:255–261. doi:10.1023/A:1023685621215

    Article  CAS  Google Scholar 

  • Bernal C, Diaz I, Coello N (2006) Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea. Can J Microbiol 52:445–450. doi:10.1139/w05-139

    Article  CAS  Google Scholar 

  • Bhange K, Chaturvedi V, Bhatt R (2016) Feather degradation potential of Stenotrophomonas maltophilia KB13 and feather protein hydrolysate (FPH) mediated reduction of hexavalent chromium. 3 Biotech 6:42. doi:10.1007/s13205-016-0370-5

    Article  Google Scholar 

  • Bhargavi PL, Prakasham RS (2017) Agro-industrial wastes utilization for the generation of fibrinolytic metalloprotease by Serratia marcescens RSPB11. Biocatal Agric Biotechnol 9:201–208. doi:10.1016/j.bcab.2016.11.008

    Google Scholar 

  • Bohacz J (2017) Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J Microbiol Biotechnol 33:13. doi:10.1007/s11274-016-2177-2

    Article  Google Scholar 

  • Bose A, Chawdhary V, Keharia H, Subramanian RB (2014a) Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann Microbiol 64:343–354. doi:10.1007/s13213-013-0669-y

    Article  CAS  Google Scholar 

  • Bose A, Pathan S, Pathak K, Keharia H (2014b) Keratinolytic protease production by Bacillus amyloliquefaciens 6B using feather meal as substrate and application of feather hydrolysate as organic nitrogen input for agricultural soil. Waste Biomass Valor 5:595–605. doi:10.1007/s12649-013-9272-5

    Article  CAS  Google Scholar 

  • Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750. doi:10.1007/s00253-009-2398-5

    Article  CAS  Google Scholar 

  • Burtt EH, Ichida JM (1999) Keratinase produced by Bacillus licheniformis US Patent number 5877000

  • Chaturvedi V, Bhange K, Bhatt R, Verma P (2014) Production of kertinases using chicken feathers as substrate by a novel multifunctional strain of Pseudomonas stutzeri and its dehairing application. Biocatal Agric Biotechnol 3:167–174. doi:10.1016/j.bcab.2013.08.005

    Google Scholar 

  • Daroit DJ, Brandelli A (2014) A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 34:372–384. doi:10.3109/07388551.2013.794768

    Article  CAS  Google Scholar 

  • De Oliveira CT, Pellenz L, Pereira JQ, Brandelli A, Daroit DJ (2016) Screening of bacteria for protease production and feather degradation. Waste Biomass Valor 7:447–453. doi:10.1007/s12649-015-9464-2

    Article  Google Scholar 

  • De Oliveira CT, Pereira JQ, Brandelli A, Daroit DJ (2017) Prospecting soil bacteria from subtropical Brazil for hydrolases production. Biologia 72:130–139. doi:10.1515/biolog-2017-0025

    Article  Google Scholar 

  • Demir T, Hameş EE, Öncel SS, Vardar-Sukan F (2015) An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. Int Biodeterior Biodegrad 103:134–140. doi:10.1016/j.ibiod.2015.04.025

    Article  CAS  Google Scholar 

  • El-Naggar NEA, Moawad H, Abdelwahed NAM (2017) Optimization of fermentation conditions for enhancing extracellular production of L-asparaginase, an anti-leukemic agent, by newly isolated Streptomyces brollosae NEAE-115 using solid state fermentation. Ann Microbiol 67:1–15. doi:10.1007/s13213-016-1231-5

    Article  Google Scholar 

  • Fakhfakh N, Ktari N, Haddar A, Mnif IH, Dahmen I, Nasri M (2011) Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem 46:1731–1737. doi:10.1016/j.procbio.2011.05.023

    Article  CAS  Google Scholar 

  • Fakhfakh-Zouari N, Haddar A, Hmidet N, Frikha F, Nasri M (2010) Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochem 45:617–626. doi:10.1016/j.procbio.2009.12.007

    Article  CAS  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzym Microb Technol 32:519–524. doi:10.1016/S0141-0229(02)00324-1

    Article  CAS  Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. doi:10.1007/s00253-002-0975-y

    Article  CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33. doi:10.1007/s00253-005-0239-8

    Article  CAS  Google Scholar 

  • Jeong JH, Jeon YD, Lee OM, Kim JD, Lee NR, Park GT, Son H (2010) Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21:1029–1040. doi:10.1007/s10532-010-9363-y

    Article  CAS  Google Scholar 

  • Kasana RC, Salwan R, Yadav SK (2011) Microbial proteases: detection, production, and genetic improvement. Crit Rev Microbiol 37:262–276. doi:10.3109/1040841X.2011.577029

    Article  CAS  Google Scholar 

  • Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature - a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096. doi:10.1007/s00253-015-7262-1

    Article  CAS  Google Scholar 

  • Lasekan A, Bakar FA, Hashim D (2013) Potential of chicken by-products as sources of useful biological resources. Waste Manag 33:552–565. doi:10.1016/j.wasman.2012.08.001

    Article  CAS  Google Scholar 

  • Lv LX, Sim MH, Li YD, Min J, Feng WH, Guan WJ, Li YQ (2010) Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov. Process Biochem 45:1236–1244. doi:10.1016/j.procbio.2010.03.011

    Article  CAS  Google Scholar 

  • Mabrouk MEM (2008) Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol 24:2331–2338. doi:10.1007/s11274-008-9748-9

    Article  Google Scholar 

  • Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, Matsui H, Watanabe K (2009) Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl Microbiol Biotechnol 82:941–950. doi:10.1007/s00253-009-1880-4

    Article  CAS  Google Scholar 

  • Meriem G, Mahmoud K (2017) Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology. Ann Microbiol 67:175–183. doi:10.1007/s13213-016-1249-8

    Article  CAS  Google Scholar 

  • Mishra VK (2016) Optimization of thermotolerant alkaline protease production from Brevibacillus brevis strain BT2 using surface response methodology. Biocatal Agric Biotechnol 7:87–94. doi:10.1016/j.bcab.2016.05.008

    Google Scholar 

  • Nawaz MA, Bibi Z, Karim A, Ur Rehman H, Jamal M, Jan T, Aman A, Ul Qader SA (2017) Production of α-1,4-glucosidase from Bacillus licheniformis KIBGE-IB4 by utilizing sweet potato peel. Environ Sci Pollut Res 24:4058–4066. doi:10.1007/s11356-016-8168-x

    Article  CAS  Google Scholar 

  • Park GT, Son HJ (2009) Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. Microbiol Res 164:478–485. doi:10.1016/j.micres.2007.02.004

    Article  CAS  Google Scholar 

  • Rajput R, Gupta R (2013) Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates. Bioresour Technol 133:118–126. doi:10.1016/j.biortech.2013.01.091

    Article  CAS  Google Scholar 

  • Rieger TJ, De Oliveira CT, Pereira JQ, Brandelli A, Daroit DJ (2017) Proteolytic system of Bacillus sp. CL18 is capable of extensive feather degradation and hydrolysis of diverse protein substrates. Br Poult Sci. doi:10.1080/00071668.2017.1293229

  • Sahoo DK, Das A, Thatoi H, Mondal KC, Mohapatra PKD (2012) Keratinase production and biodegradation of whole chicken feather keratin by a newly isolated bacterium under submerged fermentation. Appl Biochem Biotechnol 167:1040–1051. doi:10.1007/s12010-011-9527-1

    Article  CAS  Google Scholar 

  • Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Braz Arch Biol Technol 59:e16150684. doi:10.1590/1678-4324-2016150684

    Google Scholar 

  • Shih JCH, Williams CM (1990) Method of degrading keratinaceous material and bacteria useful therefore. US Patent number 4959311

  • Son HJ, Park HC, Kim HS, Lee CY (2008) Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol Lett 30:461–465. doi:10.1007/s10529-007-9567-3

    Article  CAS  Google Scholar 

  • Suntornsuk W, Suntornsuk L (2003) Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresour Technol 86:239–243. doi:10.1016/S0960-8524(02)00177-3

    Article  CAS  Google Scholar 

  • Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22:181–188. doi:10.1016/j.tibtech.2004.02.008

    Article  CAS  Google Scholar 

  • Vermelho AB, Villa ALV, Almeida AMM, Dias EPS, Santos EP (2010) Keratin hydrolysates, process for their production and cosmetic composition containing the same. US Patent number 20100196302

Download references

Acknowledgments

Authors thank the “Programa Institucional de Iniciação Científica da Universidade Federal da Fronteira Sul (PRO-ICT/UFFS)” and “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (PROBIC/FAPERGS).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Joner Daroit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobucki, L., Ramos, R.F. & Daroit, D.J. Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing. Environ Sci Pollut Res 24, 23125–23132 (2017). https://doi.org/10.1007/s11356-017-9876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9876-6

Keywords

Navigation