Skip to main content
Log in

Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increasing role of chemistry in industrial production and its direct and indirect impacts in everyday life create the need for continuous search and efficiency improvement of new methods for decomposition/removal of different classes of waterborne anthropogenic pollutants. This review paper addresses a highly promising class of water treatment solutions, aimed at tackling the pressing problem of emerging contaminants in natural and drinking waters and wastewater discharges. Radiation processing, a technology originating from radiation chemistry studies, has shown encouraging results in the treatment of (mainly) organic water pollution. Radiation (“high energy”) processing is an additive-free technology using short-lived reactive species formed by the radiolysis of water, both oxidative and reducing, to carry out decomposition of organic pollutants. The paper illustrates the basic principles of radiolytic treatment of organic pollutants in water and wastewaters and specifically of one of its most practical implementations (electron beam processing). Application examples, highlighting the technology’s strong points and operational conditions are described, and a discussion on the possible future of this technology follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Electron-volt (eV) (1 eV = 1.60217662e−19 J), by definition, is the amount of energy gained (or lost) by the charge of a single electron moving across an electric potential difference of 1 V. Not a SI unit, it is, however, commonly used in nuclear, radiation, and particle physics as a measure of energy, which follows the metric convention for magnitudes (e.g., 1 keV = 1000 eV).

  2. The Gray [Gy] is a SI unit defined as the absorption of 1 J of radiation energy per kilogram of matter. It is used as a measure of absorbed dose and imparted specific energy. It is a physical quantity, does not take into account biological contexts, unlike its non-SI predecessor, the roentgen [R], measuring exposure, and the Sievert [Sv], measuring a dose equivalent. Its corresponding cgs unit, the rad (1 rad = 0.01 Gy), is still used occasionally in USA-originated literature.

References

  • Abdel Daiem MM, Rivera-Utrilla J, Ocampo-Perez R, Sanchez-Polo M, Lopez-Penalver JJ (2013) Treatment of water contaminated with diphenolic acid by gamma radiation in the presence of different compounds. Chem Eng 219:371–379

    Article  CAS  Google Scholar 

  • Abdou LAW, Hakeim OA, Mahmoud MS, El-Naggar AM (2011) Comparative study between the efficiency of electron beam and gamma irradiation for treatment of dye solutions. Chem Eng J 168:752–758

    Article  CAS  Google Scholar 

  • Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment process. J Environ Eng 128:253–260

    Article  CAS  Google Scholar 

  • Bae BU, Jung ES, Kim YK, Shin HS (1999) Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Res 33:2669–2673

    Article  CAS  Google Scholar 

  • Bao H, Liu Y, Jia H (2002) A study of irradiation in the treatment of wastewater. Radiat Phys Chem 63:633–636

    Article  CAS  Google Scholar 

  • Barrera-Diaz C, Urena-Nunuze F, Campos E, Palomar-Pardave M, Romero-Romo M (2003) A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater. Radiat Phys Chem 67:657–663

    Article  CAS  Google Scholar 

  • Belgiorno V, Rizzo L, Fatta D, Della Rocca C, Lofrano G, Nikolaou A, Naddeo V, Meric S (2007) Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215:166–176

    Article  CAS  Google Scholar 

  • Biń AK, Sobera-Madej S (2012) Comparison of the advanced oxidation processes (UV, UV/H2O2 and O3) for the removal of antibiotic substances during wastewater treatment. Ozone Sci Eng 34(2):136–139

    Article  CAS  Google Scholar 

  • Bojanowska-Czajka A, Drzewicz D, Kozyra C, Nałęcz-Jawecki G, Sawicki J, Szostek B, Trojanowicz M (2006) Radiolytic degradation of herbicide 4-chloro-2-methyl phenoxyacetic acid (MCPA) by γ-radiation for environmental protection. Ecotoxicol Environ Saf 65:265–277

    Article  CAS  Google Scholar 

  • Bojanowska-Czajka A, Drzewicz P, Zimek Z, Nichipor H, Nałęcz-Jawecki G, Sawicki J, Kozyra C, Trojanowicz M (2007) Radiolytic degradation of pesticide 4-chloro-2-methyl-phenoxyacetic acid (MCPA)—experimental data and kinetic modelling. Radiat Phys Chem 76:1806–1814

    Article  CAS  Google Scholar 

  • Bojanowska-Czajka A, Kciuk G, Gumiela M, Borowiecka S, Nałęcz-Jawecki G, Koc A, Garcia-Reyes JF, Solpan Ozbay D, Trojanowicz M (2015) Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ Sci Pollut Res 22:20255–20270

    Article  CAS  Google Scholar 

  • Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239:229–246

    Article  CAS  Google Scholar 

  • Bolton JR, Valladares JE, Zanin JP, Cooper WJ, Nickelson MG, Kajdi DC, Waite TD, Kurucz CN (1998) Figures-of-merit for advanced oxidation technologies: a comparison of homogeneous UV/H2O2, heterogeneous UV/TiO2 and electron beam processes. J Adv Oxid Technol 3:174–181

    CAS  Google Scholar 

  • Borrely SI, Morais AV, Ros JM, Badaro-Perdroso X, Pereira MC, Higa MC (2016) Decoloration and detoxification of effluents by ionizing radiation. Radiat Phys Chem 124:198–202

    Article  CAS  Google Scholar 

  • Brusentseva SA, Makarenko ZN, Dolin PI (1978) Radiation decoloration of solutions of humic substances. High Energy Chem 12:189–192

    Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1987) Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radical (OH/H-) in aqueous solution. J Phys Chem Ref Data 17:512–887

    Google Scholar 

  • Callegari A, Capodaglio AG (2017) Effects of selected industrial pollutants on urban WWTPs activated sludge population, and possible mitigation strategies. Water Pract Technol 12(3). doi:10.2166/wpt.2017.064

  • Callegari A, Boguniewicz-Zablocka J, Capodaglio AG (2017) Experimental application of an advanced separation process for NOM removal from surface drinking water supply. (in press)

  • Cao DM, Zhang XH, Zhao SY, Guan Y, Zhang HQ (2011) Appropriate dose for degradation of levofloxacin lactate: gamma radiolysis and assessment of degradation product activity and cytotoxicity. Environ Eng Sci 28:183–189

    Article  CAS  Google Scholar 

  • Capodaglio AG (2016a) In-stream detection of waterborne priority pollutants, and applications in drinking water contaminant warning systems. Water Sci Technol Water Supply 17(3):707-725. doi:10.2166/ws.2016.168

  • Capodaglio AG (2016b) High energy radiation treatment for emerging and refractory contaminants in water and wastewater. Proceedings 13th IWA Leading Edge Conference on Water and Wastewater Technologies, June 13-16 Jerez de la Frontera, Spain

  • Capodaglio AG, Callegari A (2015) Water supply systems security: novel technologies for the online monitoring of unforeseeable events. WIT Trans Built Environ 151:251–263

    Article  Google Scholar 

  • Capodaglio AG, Suidan M, Venosa AD, Callegari A (2010) Efficient degradation of MtBE and other gasoline-originated compounds by means of a biological reactor of novel conception: two case studies in Italy and in the USA. Water Sci Technol 61(3):807–812

    Article  CAS  Google Scholar 

  • Capodaglio AG, Callegari A, Molognoni D (2016) Online monitoring of priority and dangerous pollutants in natural and urban waters: a state-of-the-art review. Manag Environ Qual 27(5):507–536

    Article  Google Scholar 

  • Chang HS, Choo KH, Lee B, Choi J (2009) The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 172:1–12

    Article  CAS  Google Scholar 

  • Chmielewski AG, Sun Y-X, Licki J, Bulka S, Kubica K, Zimek Z (2003) NOx and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition. Radiat Phys Chem 67:555–560

    Article  CAS  Google Scholar 

  • Cleland N (2005) Industrial application of electron accelerators, presented at the CERN accelerator school, small accelerator course, Zeegse, Netherlands, 24 May to 2 June. Available online https://cas.web.cern.ch/sites/cas.web.cern.ch/files/lectures/zeegse-2005/school-2.pdf

  • Cooper JW, Cadavid E, Nickelsen GM, Lin K, Kurucz NC, Waite DT (1993) Removing THMs from drinking water using high-energy electron-beam irradiation. J Am Water Works Assoc 85:106–112

    Google Scholar 

  • Cooper WJ, Curry RD, O’Shea KE (eds) (1998) Environmental applications of ionizing radiation. Wiley, N Y. p 752

  • Cooper WJ, Nickelsen MG, Tobien T, Mincher BJ (2001) Radiation-induced oxidation. In: Oh CH (ed) Hazardous and radioactive waste treatment technologies handbook. CRC Press, Boca Raton

    Google Scholar 

  • Cooper WJ, Nickelsen MG, Mezyk SP, Leslie G, Tornatore PM, Hardison W, Hajali PA (2002) MTBE and priority contaminant treatment with high energy electron beam injection. Radiat Phys Chem 65:451–460

    Article  CAS  Google Scholar 

  • Craft TF, Eichholz GG (1971) Synergistic treatment of textile dye wastes by irradiation and oxidation. Int J Appl Radiat Isot 22:543–547

    Article  CAS  Google Scholar 

  • Duarte CL, Sampa MHO, Rela PR, Oikawa H, Silveira CG, Azvedo AL (2002) Advanced oxidation process by electron-beam-irradiation-induced decomposition of pollutants in industrial effluents. Radiat Phys Chem 63:647–651

    Article  CAS  Google Scholar 

  • Duarte CL, Geraldo LL, Junior OAP, Borrely SI, Sato IM, Sampa MHO (2004) Treatment of effluents from petroleum production by electron beam irradiation. Radiat Phys Chem 71:443–447

    Google Scholar 

  • Dunn CG (1953) Treatment of water and sewage by ionizing radiations. Sewage Ind Waste 25:1277–1281

    CAS  Google Scholar 

  • EPA (2016) Contaminants of emerging concern including pharmaceuticals and personal care products. US EPA website https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products. Accessed May 2016

  • Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642

    Article  CAS  Google Scholar 

  • EurActive (2015) The 2013 Berlaymont Declaration on endocrine disrupters. Website http://www.euractiv.com/health/top-scientists-call-eu-action-ho-news-519969

  • Farooq S, Kurucz CN, Waite TD, Cooper WJ (1993) Disinfection of wastewaters: high-energy electron vs. gamma irradiation. Water Res 27:1177–1184

    Article  CAS  Google Scholar 

  • Gehringer P, Eschweiler H (2002) The dose rate effect with radiation processing of water—an interpretative approach. Radiat Phys Chem 65:379–386

    Article  CAS  Google Scholar 

  • Gehringer P, Fiedler H (1998) Design of a combined ozone/electron beam process for waste water and economic feasibility of the process. Radiat Phys Chem 32:345–349

    Article  Google Scholar 

  • Gehringer P, Eschweiler H, Szinovatz W, Fiedler H, Steiner R, Sonneck G (1993) Radiation-induced OH radical generation and its use for groundwater remediation. Radiat Phys Chem 42:711–714

    Article  CAS  Google Scholar 

  • Gehringer P, Eschweiler H, Fiedler H (1995) Ozone-electron beam treatment for groundwater remediation. Radiat Phys Chem 46:1075–1078

    Article  CAS  Google Scholar 

  • Gehringer P, Eschweiler H, Weiss S, Reemtsma T (2006) Decomposition of aqueous naphtha-lene-1,5-disulfonic acid by means of oxidation processes. Ozone Sci Eng 28:437–443

    Article  CAS  Google Scholar 

  • Getoff N (2002) Factors influencing the efficiency of radiation-induced degradation of water pollutants. Radiat Phys Chem 65:437–446

    Article  CAS  Google Scholar 

  • Ghatak HR (2014) Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit Rev Environ Sci Technol 44:1167–1219

    Article  CAS  Google Scholar 

  • Gligorovski S, Strekovski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (OH). Chem Rev 115:13051–13092

    Article  CAS  Google Scholar 

  • Gonzalez-Juarez JC, Jimenez-Becerril J, Cejudo-Alvarez J (2010) Degradation of 4-chloro-phenol by gamma radiation with 137Cs and X-rays. J Mex Chem Soc 54:157–159

    CAS  Google Scholar 

  • Grant SB, Saphores J-D, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I (2012) Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337:681–686

    Article  CAS  Google Scholar 

  • Gray KA, Cleland MB (1998) Environmental radiolysis for soil and sediment treatment: a review of chemistry, design, and economic issues. J Adv Oxid Technol 3:22–36

    CAS  Google Scholar 

  • Guo Z, Tang D, Liu X, Zheng Z (2008a) Gamma irradiation-induced Cd2+ and Pb2+ removal from different kinds of water. Radiat Phys Chem 77:1021–1026

    Article  CAS  Google Scholar 

  • Guo Z, Zheng Z, Gu C, Zheng Y (2008b) Gamma irradiation-induced removal of low-concentration nitrite in aqueous solution. Radiat Phys Chem 77(2008):702–707

    Article  CAS  Google Scholar 

  • Guo ZB, Zhou F, Zhao YF, Zhang CZ, Liu FL, Bao CX, Lin MY (2012) Gamma irradiation-induced sulfadiazine degradation and its removal mechanisms. Chem Eng J 191:256–262

    Article  CAS  Google Scholar 

  • Han B, Ko J, Kim J, Kim Y, Chung W, Makarov IE, Ponomarev AV, Pikaev AK (2002) Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot Plant Exp Radiat Phys Chem 64:53–59

    Article  CAS  Google Scholar 

  • Han B, Kim JK, Kim Y, Choi JS, Jeong KY (2012) Operation of industrial-scale electron beam wastewater treatment plant. Radiat Phys Chem 81:1475–1478

    Article  CAS  Google Scholar 

  • He S, Wang J, Ye L, Zhang Y, Yu J (2014) Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter. Radiat Phys Chem. doi:10.1016/j.radphyschem.2014.05.019

  • Helbling DE, Hollender J, Kohler H-PE, Singer H, Fenner K (2010) High-throughput identification of microbial transformation products of organic micropollutants. Environ Sci Technol 44:6621–6627

    Article  CAS  Google Scholar 

  • Huber MM, Gobel A, Joss A, Hermann N, Loffler D, Mcardell AR, Siegrist H, Ternes TA, Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Techol 39:4290–4299

    Article  CAS  Google Scholar 

  • Huerta-Fontela M, Ventura F, Galceran MT (2010) Fast liquid chromatography-quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water. J Chromatogr A 1217:4212

    Article  CAS  Google Scholar 

  • Huerta-Fontela M, Galceran MT, Ventura F (2011) Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res 45:1432–1442

    Article  CAS  Google Scholar 

  • IAEA (2014) Nuclear technology review. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ikehata K, Gamal E-DM, Snyder SA (2008) Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Sci Eng 30(1):21–26

    Article  CAS  Google Scholar 

  • Illes E, Takacs E, Dombi A, Gajda-Schranz K, Gonter K, Wojnarovits L (2012) Radiation induced degradation of ketoprofen in dilute aqueous solution. Radiat Phys Chem 81:1479–1483

    Article  CAS  Google Scholar 

  • Jeaong J, Song WH, Cooper WJ, Jung J, Greaves J (2010) Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78:533–540

    Article  CAS  Google Scholar 

  • Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176

    Article  CAS  Google Scholar 

  • Kantoglu O, Ergun E (2016) Radiation induced destruction of thebaine, papaverine and noscapine in methanol. Radiat Phys Chem 124:184–190

    Article  CAS  Google Scholar 

  • Kim Y, Kim J, Han B (2011) Application of an electron accelerator for the treatment of waste-water from textile dyeing industries. J Korean Phys Soc 59:3489–3493

    Article  CAS  Google Scholar 

  • Kim SM, Kang WG, Kim JK, Han BS (2012a) Mobile type electron accelerator. US patent 8,277,738 B2

  • Kim T, Kim SD, Kim HY, Lim SJ, Lee M, Yu S (2012b) Degradation and toxicity assessment of sulfamethoxazole and chlorteteracycline using electron beam, ozone and UV. J Hazard Mater 227-228:237–242

    Article  CAS  Google Scholar 

  • Kimura A, Osawa M, Taguchi M (2012) Decomposition of persitent pharmaceuticals in wastewater by ionizing radiation. Radiat Phys Chem 81:1508–1512

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  • Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks X, Thach S, Cheung P, White-head B (2011) Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—occurrence and treatment efficiency. Sci Total Environ 409:1481–1488

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer M, Villagrasa M, Lopez de Alda M, Cespedes-Sanchez R, Ventura F, Barcelo D (2013) Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Env 458-460:466–476

    Article  CAS  Google Scholar 

  • Kuk SH, Kim SM, Kang WG, Han B (2011) High-power accelerator for environmental applications. J Korean Phys Soc 59:3485–3488

    Article  CAS  Google Scholar 

  • Kumakura M, Kaetsu I (1984) Effect of electron beam current on radiation pretreatment of cellulosic wastes with electron beam accelerator. Radiat Phys Chem 23:523–527

    CAS  Google Scholar 

  • Kurucz CN, Waite TD, Cooper WJ, Nickelsen MG (1991) High energy electron beam irradiation of water, wastewater and sludge. In: Lewins J, Becker M (eds) Advances in nuclear science and technology, vol 23. Plenum Press, New York, pp 1–43

    Google Scholar 

  • Kurucz CN, Waire TD, Cooper WJ, Nickelsen MG (1995a) Empirical models for estimating the destruction of toxic organic compounds utilizing electron beam irradiation at full scale. Radiat Phys Chem 45:805–816

    Article  CAS  Google Scholar 

  • Kurucz CN, Waite TD, Cooper WJ (1995b) The Miami electron beam research facility: a large scale wastewater treatment application. Radiat Phys Chem 45:299–308

    Article  CAS  Google Scholar 

  • Kwon M, Yoon Y, Cho E, Jung Y, Lee BC, Paeng KJ, Kang JW (2012) Removal of iopromide and degradation characteristics in electron beam irradiation process. J Hazard Mater 227:126–134

    Article  CAS  Google Scholar 

  • Liu YK, Wang JL (2013) Degradation of sulfamethazine by gamma irradiation in the presence of hydrogen peroxide. J Hazard Mater 250:99–105

    Article  CAS  Google Scholar 

  • Liu Z, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    Article  CAS  Google Scholar 

  • Liu N, Wang T, Zheng M, Lei J, Tang L, Hu G, Xu G, Wu M (2015) Radiation induced degradation of antiepileptic drug primidone in aqueous solution. Chem Eng J 270(2015):66–72

    Article  CAS  Google Scholar 

  • Macesek F, Mikulaj V, Rajec P, Cech R, Matel L (1995) Radiation oxidation of phenol in the presence of petrochemical wastewater components. J Radioanal Nucl Chem 191:129–143

    Article  Google Scholar 

  • Mak FT, Zele SR, Cooper WJ, Kurucz CN, Waite TD, Nickelsen MG (1997) Kinetic modeling of carbon tetrachloride, chloroform and methylene chloride removal from aqeous solution using the electron beam process. Water Res 31:219–228

    Article  CAS  Google Scholar 

  • Martin DI, Margaritescu I, Cristea E, Togoe I, Ighigeanu D, Nemtanu MR, Oproiu C, Iacob N (2005) Application of accelerated electron beam and microwave irradiation to biological waste treatment. Vacuum 77:501–506

    Article  CAS  Google Scholar 

  • Matilainen A, Sillanpää M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80:351–0365

    Article  CAS  Google Scholar 

  • Mboula VM, Hequet V, Andres Y, Pastrana-Martınez LM, Dona-Rodrıguez JM, Silva AMT, Falaras P (2013) Photocatalytic degradation of endocrine disruptor compounds under simulated solar light. Water Res 47:3997–4005

    Article  CAS  Google Scholar 

  • Mezyk SP, Neubauer TJ, Cooper WJ, Peller JR (2007) Free-radical-induced oxidative and reductive degradation of sulfa drugs in water: absolute kinetics and efficiencies of hydroxyl radical and hydrated electron reactions. J Phys Chem A 111:9019–9024

    Article  CAS  Google Scholar 

  • Mincher BJ, Curry RD (2000) Considerations for choice of a kinetic fig. of merit in process radiation chemistry for waste treatment. Appl Radiat Isotop 52:189–193

    Article  CAS  Google Scholar 

  • Mincher BJ, Meikrantz DH, Murphy RJ, Gresham GKL, Connolly MJ (1991) Gamma-ray induced degradation of PCBs and pesticides using spent reaction fuel. Appl Radiat Isot 42:1061–1066

    Article  CAS  Google Scholar 

  • Moraes MCF, Romanell IMF, Sena HC, da Silva GP, Sampa MHO, Borrely SI (2004) Whole acute toxicity removal; from industrial and domestic effluents treated by electron beam radiation: emphasis on anion surfactants. Radiat Phys Chem 71:461–463

    Article  CAS  Google Scholar 

  • Nickelsen MG, Kajdi DC, Cooper WJ, Kurucz CN, Waite TD, Gensel F, Lorenzl H, Sparka U (1998) Field application of a mobile 20kW electron beam treatment system on contaminated groundwater and industrial wastes. In: Cooper WJ, Curry RD, O’Shea KE (eds) Environmental application of ionizing radiation. Wiley, New York, pp 451-466

  • Nickelsen MG, Cooper WJ, Secker DA, Rosocha LA, Kurucz CN, Waite TD (2002) Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation. Radiat Phys Chem 65:579–587

    Article  CAS  Google Scholar 

  • Ocampo-Perez R, Rivera-Utrilla J, Sanchez-Polo M, Lopez-Penalver JJ, Leyva-Ramos R (2011) Degradation of antineoplastic cytarabine in aqueous solution by gamma radiation. Chem Eng J 174:1–8

    Article  CAS  Google Scholar 

  • Papadaki M, Emery R, Abu-Hassan M, Diaz-Bustos A, Metcalfe I, Mantzavinos D (2004) Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents. Sep Purif Technol 34:35–42

    Article  CAS  Google Scholar 

  • Parsons S (ed) (2004) Advanced oxidation processes for water and wastewater. IWA Publishing, London, p 368

  • Perkowski J, Kos L (1988) Purification of textile wastes by radiation and coagulation method (in polish). Przeg Wlok 444-446

  • Petrovic M, Gonzalez S, Barcelo D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22(10):685–696

    Article  CAS  Google Scholar 

  • Petrovic M, Gehringer P, Eschweiler H, Barcelo D (2007) Radiolytic decomposition of multi-class surfactants and their biotransformation products in sewage treatment plant effluents. Chemosphere 66:114–122

    Article  CAS  Google Scholar 

  • Pikaev AK, Podzorova EA, Bakhtin OM (1997) Combined electron beam and ozone treatment of wastewater in the aerosol flow. Radiat Phys Chem 49:155–157

    Article  CAS  Google Scholar 

  • Pikaev AK, Ponomarev AV, Bludenko AV, Mini VN, Elizar’eva LM (2001a) Combined electron-beam and coagulation purification of molasses slops. Features of the method, technical and economic evaluation of large-scale facility. Radiat Phys Chem 61:81–87

    Article  CAS  Google Scholar 

  • Pikaev AK, Ponomarev AV, Bludenko AV, Minin VN, Elizae’eva LM (2001b) Combined electron-beam and coagulation purification of molasses distillery slops. Features of the method, technical and economic evaluation of large-scale facility. Radiat Phys Chem 61:81–87

    Article  CAS  Google Scholar 

  • Plumlee MH, Stanford BD, Debroux JF, Cory Hopkins D, Snyder SA (2014) Costs of advanced treatment in water reclamation. Ozone Sci Eng 36(5):485–495

    Article  CAS  Google Scholar 

  • Rawat KP, Sarma KSS (2013) Enhanced biodegradation of wastewater with electron beam pretreatment. Appl Radiat Isot 74:6–8

    Article  CAS  Google Scholar 

  • Razavi B, Song WH, Cooper WJ, Greaves J, Jeong J (2009) Free-radical-induced oxidative and reductive degradation of fibrate pharmaceuticals: kinetic studies and degradation mechanisms. J Phys Chem A 113:1287–1294

    Article  CAS  Google Scholar 

  • Rela PR, Sampa MHO, Duarte CL, Costa FE, Sciani V (2000) Development of an up-flow irradiation device for electron beam wastewater treatment. Radiat Phys Chem 57:657–660

    Article  CAS  Google Scholar 

  • Ribeiro MA, Sato IM, Duarte CL, Sampa MHO, Salvador VLR, Scapin MA (2004) Application of the electron-beam treatment for Ca, Si, P, Al, Fe, Cr, Zn, Co, As, Se, Cd and Hg removal in the simulated and actual industrial effluents. Radiat Phys Chem 71:423–426

    Article  CAS  Google Scholar 

  • Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the Advanced Oxidation Processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51

    Article  CAS  Google Scholar 

  • Roshani B, Karpel Vel Leitner N (2011) The influence of persulfate addition for the degradation of micropollutants by ionizing radiation. Chem Eng J 168:784–789

    Article  CAS  Google Scholar 

  • Sagi G, Kovacs K, Bersenyi A, Csay T, Takacs E, Wojanrovits L (2016) Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution. Radiat Phys Chem 124:179–183

    Article  CAS  Google Scholar 

  • Sakumoto A, Miyata T (1977) Treatment of waste water by a combined technique of irradiation and conventional method. Radiat Phys Chem 24:99–115

    Google Scholar 

  • Sanchez-Polo M, Lopez-Penalver J, Prados-Joya G, Ferro-Garcia MA, Rivera-Utrilla J (2009) Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res 43:4028–4036

    Article  CAS  Google Scholar 

  • Sawai T, Sawai T, Yamazaki M (1981) The effect of γ-irradiation on the biodegradability of landfill leachate. Bull Chem Soc Jpn 54:313–314

    Article  CAS  Google Scholar 

  • Scapin MA, Duarte C, Sampa MHO, Sato IM (2007) Recycling of the used automotive lubricating oil by ionizing radiation process. Radiat Phys Chem 76:1899–1902

    Article  CAS  Google Scholar 

  • Shi H, Cheng X, Wu Q, Mu R, Ma Y (2012) Assessment and removal of emerging water contaminants. J Environ Anal Toxicol S2:003. doi:10.4172/2161-0525.S2-003

  • Shin H, Kim Y, Han B, Makarov IE, Ponomarev AV, Pikaev AK (2002) Application of electron beam to treatment of wastewater from papermill. Radiat Phys Chem 65:539–547

    Article  CAS  Google Scholar 

  • Snyder SA (2008) Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone Sci Eng 30(1):65–69

    Article  CAS  Google Scholar 

  • Song WH, Cooper WJ, Mezyk SP, Greaves J, Peake BM (2008) Free radical destruction of beta-blockers in aqueous solution. Environ Sci Technol 42:1256–1261

    Article  CAS  Google Scholar 

  • Stefan MI (2016) Advanced oxidation processes for water treatment: fundamentals and applications. IWA Publishing

  • Szabo L, Toth T, Homlok R, Takacs E, Wojnarovits L (2012) Radiolysis of paracetamol in dilute aqueous solution. Radiat Phys Chem 81:1503–1507

    Article  CAS  Google Scholar 

  • L. Szabó, J. Szabó, E. Illés, A. Kovács, Á. Belák, Cs. Mohácsi-Farkas, E. Takács, L. Wojnárovits (2017) Electron beam treatment for tackling the escalating problems of antibiotic resistance: eliminating the antimicrobial activity of wastewater matrices originating from erythromycin. Chem. Eng. J. 321:314-324.

  • Taghipour F, Evans GJ (1996) Radiolytic elimination of organochlorine in pulp mill effluent. Environ Sci Technol 30:1558–1564

    Article  CAS  Google Scholar 

  • Thill PG, Ager DK, Vojnovic B, Tesh SJ, Scott TB, Thomson IP (2016) Hybrid biolo-gical, electron beam and zero-valent nano iron treatment of recalcitrant metalworking fluids. Water Res 93:214–231

    Article  CAS  Google Scholar 

  • Thompson JE, Blatchley ER (1999) Toxicity effects of γ-irradiated wastewater effluents. Water Res 33:2053–2058

    Article  CAS  Google Scholar 

  • Tootchi L (2010) By-product formation from select pharmaceuticals during drinking water ozonation treatment. Electronic theses and dissertations. Paper 96. University of Windsor. Accessible online at http://scholar.uwindsor.ca/etd

  • Torun M, Gultekin O, Solpan D, Guven O (2015) Mineralization of paracetamol in aqueous solution with advanced oxidation processes. Environ Technol 36:970–982

    Article  CAS  Google Scholar 

  • Trebše P, Arčon I (2003) Degradation of organophosphorus compounds by X-ray irradiation. Radiat Phys Chem 67:527–530

    Article  CAS  Google Scholar 

  • Trump JG, Merrill EW, Wright KA (1977) Disinfection of sewage wastewater and sludge by electron treatment. Radiat Phys Chem 24:55–55

    Google Scholar 

  • Tsydenova O, Batoev V, Batoeva A (2015) Solar-enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants. Int. J. Environ. Res. Public Health 12:9542–9561

    CAS  Google Scholar 

  • Wang J, Wang J (2007) Application of radiation technology to sewage sludge processing: a review. J Hazard Mater 143:2–7

    Article  CAS  Google Scholar 

  • Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmon T, Ma Y (2011) Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res 45:1818–1828

    Article  CAS  Google Scholar 

  • Wang L, Batchelor B, Pillai SD, Botlaguduru VSV (2016) Electron beam treatment for potable water reuse: removal of bromate and perfluorooctanoic acid. Chem Eng J 302:58–68

    Article  CAS  Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39(17):6649-6663

  • Wojnarovitz L, Takacs E (2008) Irradiation treatment of azo dye containing wastewater: an overview. Radiat Phys Chem 77:225–244

    Article  CAS  Google Scholar 

  • Woodbridge DD, Mann LA, Garrett WR (1972) Usable water from raw sewage. Bull Environ Contam Toxicol 7:80–86

    Article  CAS  Google Scholar 

  • Wu Q, Shi H, Adams CD, Timmons T, Ma Y (2012) Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan. Sci Total Environ 439:18–25

    Article  CAS  Google Scholar 

  • Yu SH, Lee BJ, Lee MJ, Cho IH, Chang SW (2008) Decomposition and mineralization of cefaclor by ionizing radiation: kinetics and effects of the radical scavengers. Chemosphere 71:2106–2112

    Article  CAS  Google Scholar 

  • Zaki AA, El-Gendy NA (2014) Removal of metal ions from wastewater using EB irradiation in combination with HA/TiO2/UV treatment. J Hazard Mater 271:275–282

    Article  CAS  Google Scholar 

  • Zheng M, Xu G, Pei J, He X, Xu P (2014) EB-radiolysis of carbamazepine: in pure-water with different ions and in surface water. J Radioanal Nucl Chem 302:139–142

    Article  CAS  Google Scholar 

  • Zona R, Solar S, Sehested K (2012) OH-radical induced degradation of 2,4,5-trichloropheno-xyacetic acid (2,4,5-T) and 4-chloro-2-methylphenoxyacetic acid (MCPA): a pulse radiolysis and gamma-radiolysis study. Radiat Phys Chem 81:152–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant from the Polish National Center of Science (NCN), project OPUS 8, number 2014/15/B/ST4/04601. The authors wish to thank Prof. Krzysztof Bobrowski (INCT, Warsaw) for valuable discussion and help in editing the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea G. Capodaglio.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trojanowicz, M., Bojanowska-Czajka, A. & Capodaglio, A.G. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ Sci Pollut Res 24, 20187–20208 (2017). https://doi.org/10.1007/s11356-017-9836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9836-1

Keywords

Navigation