Skip to main content
Log in

Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon contaminated polar soils. Extremophiles 10:171–179. doi:10.1007/s00792-005-0498-4

    Article  CAS  Google Scholar 

  • Ali N, Dashti N, Al-Mailem D, Eliyas M, Radwan S (2012) Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environ Sci Pollut Res 19:812–820. doi:10.1007/s11356-011-0624-z

    Article  CAS  Google Scholar 

  • Almeida FCG (2015) Biosurfactant production in Pantoea sp. using bark pineapple and corn steep liquor and application in bioremediation. Thesis, State University of Campinas (in Portuguese)

  • Al-Wahaibi Y, Al-Hadrami H, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S (2016) Injection of biosurfactant and chemical surfactant following hot water injection to enhance heavy oil recovery. Pet Sci 13:100–109. doi:10.1007/s12192-015-0067-0

    Article  CAS  Google Scholar 

  • Amani H (2015) Evaluation of biosurfactants and surfactants for crude oil contaminated sand washing. Pet Sci Technol 33(5):510–519. doi:10.1080/10916466.2014.999941

    Article  CAS  Google Scholar 

  • Amani H, Mehrnia MR, Haghighi M, Sarrafzadeh MH, Soudi MR (2010) Scale up and application of biosurfactant from Bacillus subtilis in enhanced oil recovery. Appl Biochem Biotechnol 162:510–523. doi:10.1007/s12010-009-8889-0

    Article  CAS  Google Scholar 

  • Ángeles MT, Refugio RV (2013) In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil. Braz J Microbiol 44(2):595–605. doi:10.1590/S1517-83822013000200040

    Article  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under invessel composting conditions. Environ Pollut 141:459–468. doi:10.1016/j.envpol.2005.08.066

    Article  CAS  Google Scholar 

  • Ayed BH, Jridi M, Maalej H, Nasri M, Hmidet N (2014) Characterization and stability of biosurfactant produced by Bacillus mojavensis A21 and its application in enhancing solubility of hydrocarbon. J Chem Technol Biotechnol 89(7):1007–1014. doi:10.1002/jctb.4192

    Article  Google Scholar 

  • Bacosa HP, Suto K, Inoue C (2013) Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. J Environ Sci Health A 48:1–12. doi:10.1080/10934529.2013.761476

    Article  Google Scholar 

  • Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178. doi:10.1016/j.bej.2015.05.007

    Article  CAS  Google Scholar 

  • Biniarz P, Łukaszewicz M, Janek T (2017) Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol 37:393–410. doi:10.3109/07388551.2016.1163324

    Article  CAS  Google Scholar 

  • Chaprão MJ, Ferreira INS, Correa PF, Rufino RD, Luna JM, Silva EJ, Sarubbo LA (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron J Biotechnol 18:471–479. doi:10.1016/j.ejbt.2015.09.005

    Article  Google Scholar 

  • Cookson JTJ (1994) Bioremediation engineering: design and application. Mc Graw Hill, New York

    Google Scholar 

  • Costa SG, Nitschke M, Haddad R, Eberlin MN, Contiero J (2006) Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem 41:483–488. doi:10.1016/j.procbio.2005.07.002

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: in a overview. Biotechnol Res Int 2011:1–13. doi:10.4061/2011/941810

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104(6):1675–1684. doi:10.1111/j.1365-2672.2007.03701.x

    Article  CAS  Google Scholar 

  • De Faria AF, Teodoro-Martinez DS, Barbosa GNO, Vaz BG, Silva IS, Garcia JS, Totola MR, Eberlin MN, Grossman M, Alves OL, Durrant LR (2011) Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957. doi:10.1016/j.procbio.2011.07.001

    Article  Google Scholar 

  • De Oliveira DWF, França IWL, Félix AKN, Martins JJL, Giroa MEA, Melo VMM, Gonçalves LRB (2013) Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B: Biointerfaces 101:34–43. doi:10.1016/j.colsurfb.2012.06.011

    Article  Google Scholar 

  • Debon J (2015) Production of biosurfactant by Bacillus subtilis ATCC 21332 in anaerobic condition. Thesis, Federal University of Santa Catarina (in Portuguese)

  • Decesaro A (2016) Production of biosurfactants from waste from the dairy industry for application in bioremediation processes. Dissertation, University of Passo Fundo (in Portuguese)

  • Decesaro A, Berticelli R, Magro FG, Colla LM (2015) Biosurfactants in bioremediation processes. Exact Nat Sci J 17(1):121–145 (in Portuguese)

    Google Scholar 

  • Decesaro A, Rigon MR, Thomé A, Colla LM (2013) Production of biosurfactants by microorganisms isolated from soil contaminated with diesel oil. New Chem 36(7):947–954. doi:10.1590/S0100-40422013000700005 (in Portuguese)

    CAS  Google Scholar 

  • Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomona saeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47. doi:10.1016/j.bcab.2015.11.006

    Google Scholar 

  • Deuel LE, Holliday GH (1997) Soil remediation for the petroleum extraction industry, 2ª edn. Penn Well, Tulsa

    Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    CAS  Google Scholar 

  • Dubey KV, Charde PN, Meshram SU, Shendre LP, Dubey VS, Juwarkar AA (2012) Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions. Bioresour Technol 126:368–374. doi:10.1016/j.biortech.2012.05.024

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Filler DM, Reynolds CM, Snape I, Daugulis AJ, Barnes DL, Williams PJ (2006) Advances in engineered remediation for use in the Arctic and Antarctica. Polar Rec 42:111–120. doi:10.1017/S003224740500505X

    Article  Google Scholar 

  • Fontes GC, Amaral PFF, Coelho MAS (2008) Production of biosurfactants by yeast. New Chem 31(8):2091–2099. doi:10.1590/S0100-40422008000800033 (in Portuguese)

    CAS  Google Scholar 

  • Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol 75:235–240. doi:10.1016/S0960-8524(00)00059-6

    Article  CAS  Google Scholar 

  • França IWL, Lima AP, Lemos JAM, Lemos CGF, Melo VMM, Sant’ana HB, Gonçalves LRB (2015) Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal Today 255:10–15. doi:10.1016/j.cattod.2015.01.046

    Article  Google Scholar 

  • Gaylarde CC, Bellinaso ML, Manfio GP (2005) Biological aspects and techniques of bioremediation of xenobiotics. Biotechnol Sci Dev 34:36–43 (in Portuguese)

    Google Scholar 

  • Gudiña EJ, Pereira JFB, Rodrigues LR, Coutinho JAP, Teixeira JA (2012) Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. Int Biodeterior Biodegrad 68:56–64. doi:10.1016/j.ibiod.2012.01.001

    Article  Google Scholar 

  • Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biossurfactants. Trends Pharmacol Sci 34(12):667–675. doi:10.1016/j.tips.2013.10.002

    Article  Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105. doi:10.1038/sj.jin.29.00.259

    Article  CAS  Google Scholar 

  • Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219. doi:10.1016/j.procbio.2012.04.018

    Article  CAS  Google Scholar 

  • Jacques RJS, Bento FM, Antoniolli ZI, Camargo FAO (2007) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons. Rural Sci 37(4):1192–1201. doi:10.1590/S0103-84782007000400049 (in Portuguese)

    Article  CAS  Google Scholar 

  • Jordan RN, Nichols EP, Cunningham AB (1999) The role of (bio) surfactant sorption in promoting the bioavailability of nutrients localized at the solid-water interface. Water Sci Technol 39:91–98. doi:10.1016/S0273-1223(99)00155-9

    CAS  Google Scholar 

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199. doi:10.1016/j.biortech.2006.12.010

    Article  CAS  Google Scholar 

  • Junior GAL (2012) Obtaining surfactin by the microorganism Bacillus subtilis ATCC 6633. Dissertation, Federal University of Paraná (in Portuguese)

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164. doi:10.1111/j.1751-7915.2009.00130.x

    Article  CAS  Google Scholar 

  • Korayem AS, Abdelhafez AA, Zaki MM, Saleh EA (2015) Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett–Burman design. Ann Agric Sci 60(2):209–217. doi:10.1016/j.aoas.2015.09.001

    Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968. doi:10.1016/j.chemosphere.2016.10.115

    Article  CAS  Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339. doi:10.1007/s00253-013-4740-1

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  Google Scholar 

  • Lima CJB (2007) Production of biosurfactant by Pseudomonas aeruginosa using residual soybean oil. Thesis, Federal University of Uberlândia (in Portuguese)

  • Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011a) Biodegradability of bacterial surfactants. Biodegradation 22:585–592. doi:10.1007/s10532-010-9431-3

    Article  CAS  Google Scholar 

  • Lima TMS, Procópio LC, Brandão FD, Carvalho AMX, Tótola MR, Borges AC (2011b) Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution. Biodegradation 22:1007–1015. doi:10.1007/s10532-011-9459-z

    Article  CAS  Google Scholar 

  • Lin TC, Pan PT, Young CC, Chang JS, Chang TC, Cheng SS (2011) Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ Sci Pollut Res 18:1487–1496. doi:10.1007/s11356-011-0485-5

    Article  CAS  Google Scholar 

  • Liu Q, Lin J, Wang W, Huang H, Li S (2015) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37. doi:10.1016/j.bej.2014.08.023

    Article  CAS  Google Scholar 

  • Ma K-Y, Sun M-Y, Dong W, He C-Q, Chen F-L, Ma Y-L (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 6:144–151. doi:10.1016/j.bcab.2016.03.008

    Google Scholar 

  • Mnif I, Ellouze-Chaabouni S, Ghribi D (2013) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88:779–787. doi:10.1002/jctb.3894

    Article  CAS  Google Scholar 

  • Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res 22:14852–14861. doi:10.1007/s11356-015-4488-5

    Article  CAS  Google Scholar 

  • Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81. doi:10.1016/j.psep.2017.02.002

    Article  CAS  Google Scholar 

  • Montastruc L, Liu T, Gancel F, Zhao L, Nikov I (2008) Integrated process for production of surfactina—part 2. Equilibrium and kinetic study of surfactin adsorption onto activated carbon. Biochem Eng J 38:349–354. doi:10.1016/j.bej.2007.07.023

    Article  CAS  Google Scholar 

  • Moussavi G, Shekoohiyan S, Naddafi K (2017) The accelerated enzymatic biodegradation and COD removal of petroleum hydrocarbons in the SCR using active bacterial biomass capable of in-situ generating peroxidase and biosurfactants. Chem Eng J 308:1081–1089. doi:10.1016/j.cej.2016.09.136

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375. doi:10.1016/j.micres.2009.08.001

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515. doi:10.1016/j.tibtech.2006.09.005

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198. doi:10.1016/j.envpol.2004.06.009

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong CN, Gibbs BF (1999) On the use of biosurfactants for the removal of heavy metals from oil contaminated soil. Environ Prog 18:31–35. doi:10.1002/ep.670180120

    Article  Google Scholar 

  • Naseri M, Barabadi A, Barabady J (2014) Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters. Environ Sci Pollut Res 21:11250–11265. doi:10.1007/s11356-014-3122-2

    Article  CAS  Google Scholar 

  • Neves SMN, Guedes RMC (2012) Fluorescent in situ hybridization: basic principles and perspectives for the diagnosis of infectious diseases in veterinary medicine. Arch Inst Biol São Paulo 79(4):627–632. doi:10.1590/S1808-16572012000400023 (in Portuguese)

    Google Scholar 

  • Nishio SR (2010) Evaluation of the prokaryotic microbial community through molecular techniques—FISH, PCR/DGGE and sequencing in artificial load reduction systems: emphasis on the study of facultative stabilization pond. Thesis, University of São Paulo (in Portuguese)

  • Nitschke M, Ferraz C, Pastore GM (2004) Selection of microorganisms for biosurfactant production using agroindustrial wastes. Braz J Microbiol 35:81–85. doi:10.1590/S1517-83822004000100013

    Article  Google Scholar 

  • Noordman WH, Ji W, Brusseu ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32:1802–1812. doi:10.1021/es970739h

    Article  Google Scholar 

  • Oliveira RM, Alves F (2013) Microbial diversity used in the bioremediation of soils contaminated by petroleum and oil products. Scientific J Nucleus Biosci 3(5):1–14 (in Portuguese)

    Google Scholar 

  • Onur G (2015) Screening of biosurfactant producing and diesel oil degrading bacteria from petroleum hydrocarbon contaminated surface waters. Thesis, Middle East Technical University

  • Pacwa-Plociniczak M, Plaza GA, Poliwoda A, Seget ZP (2014) Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminanted soil. Environ Sci Pollut Res 21:9385–9395. doi:10.1007/s11356-014-2872-1

    Article  CAS  Google Scholar 

  • Pantsyrnaya T, Blanchard F, Delaunay S, Goergen JL, Guedon E, Guseva E, Boudrant J (2011) Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere 83:29–33. doi:10.1016/j.chemosphere.2011.01.024

    Article  CAS  Google Scholar 

  • Pereira DS, Gomes RC, Semêdo LTAS (2012) Potential of actinobacteria in biodegradation of hydrocarbons. Electron Mag TECCEN 5:71–96 (in Portuguese)

    Article  Google Scholar 

  • Prieto LM (2007) Production, partial characterization and environmental application of rhamnolipids from Pseudomonas aeruginosa isolated from fish waste. Dissertation, Federal University of Rio Grande (in Portuguese)

  • Providenti MA, Lee HE, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitran compounds. J Ind Microbiol 12:379–395. doi:10.1007/BF01569669

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchan R, Banat IM (2002) Rhamnolipids biosurfactants productions by strains of Pseudomonas aeruginosa using low cost raw materials. Biotechnol Prog 18:1277–1281. doi:10.1021/bp020071x

    Article  CAS  Google Scholar 

  • Ringeisen BR, Rincon K, Fitzgerald LA, Fulmer PA, Wu PK (2015) Printing soil: a single-step, high-throughput method to isolate micro-organisms and near-neighbour microbial consortia from a complex environmental sample. Methods Ecol Evol 6:209–217. doi:10.1111/2041-210X.12303

    Article  Google Scholar 

  • Robert M, Mercadé ME, Bosch MP, Parra JL, Espiny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11:871–874. doi:10.1007/BF01026843

    Article  CAS  Google Scholar 

  • Saimmai A, Kaewrueng J, Maneerat S (2012) Used lubricating oil degradation and biosurfactant production by SC-9 consortia obtained from oil-contaminated soil. Ann Microbiol 62:1757–1767. doi:10.1007/s13213-012-0434-7

    Article  CAS  Google Scholar 

  • Santos DKF, Meira HM, Rufino RD, Luna JM, Sarubbo LA (2017) Biosurfactant production from Candida lipolytica in bioreactor and evaluation of its toxicity for application as a bioremediation agent. Process Biochem 54:20–27. doi:10.1016/j.procbio.2016.12.020

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195. doi:10.1016/j.envpol.2004.09.025

    Article  CAS  Google Scholar 

  • Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30:127–144. doi:10.3109/07388550903427280

    Article  CAS  Google Scholar 

  • Schenk T, Schuphan I, Schidt B (1995) High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chomatography 693:7–13. doi:10.1016/0021-9673(94)01127-Z

    Article  CAS  Google Scholar 

  • Silva RCFS, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542. doi:10.3390/ijns150712523

    Article  Google Scholar 

  • Soares DWF (2014) Production and characterization of biosurfactants obtained by lineages of Bacillus sp. isolated from residual water treatment plants and mangrove soil (Ceará—Brazil). Thesis, Federal University of Ceará (in Portuguese)

  • Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164:297–303. doi:10.1016/j.micres.2007.01.005

    Article  CAS  Google Scholar 

  • Szulc A, Ambrozewicz D, Sydow M, Ławniczak Ł, Cyplik AP, Marecik R, Chrzanowski L (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manag 132:121–128. doi:10.1016/j.jenvman.2013.11.006

    Article  CAS  Google Scholar 

  • Ting YP, Hu HL, Tan HM (1999) Bioremediation of petroleum hydrocarbons in soil microcosms. Resour Environ Biotechnol 2:197–218

    CAS  Google Scholar 

  • Tonini RMCW, Rezende CE, Grativol AD (2010) Degradation and bioremediation of petroleum compounds by bacteria: review. Oecologia Australis 14(4):1025–1035. doi:10.4257/oeco.2010.1404.11 (in Portuguese)

    Article  Google Scholar 

  • Valpuesta RRF (2008) Optimization of biosurfactant production by isolates Bacillus subtilis from renewable and low cost raw materials. Dissertation, Federal University of Rio de Janeiro (in Portuguese)

  • Varjani SJ, Upasani VN (2016) Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182. doi:10.1016/j.biortech.2016.08.060

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397. doi:10.1016/j.biortech.2017.02.047

    Article  CAS  Google Scholar 

  • Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108. doi:10.3390/ijms11125095

    Article  CAS  Google Scholar 

  • Wei Y-H, Chu I-M (1998) Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzym Microb Technol 22:724–728. doi:10.1016/S0141-0229(98)00016-7

    Article  CAS  Google Scholar 

  • Whang LM, Liu PW, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163. doi:10.1016/j.jhazmat.2007.05.063

    Article  CAS  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic pseudomonas putida KT2440. Microb Cell Factories 10:80. doi:10.1186/1475-2859-10-80

    Article  CAS  Google Scholar 

  • Yi L, Zhu Z, Ran W (2013) Optimization of medium composition for lipopeptide production from bacillus subtilis N7 using response surface methodology. Korean J Microbiol Biotechnol 41:52–59. doi:10.4014/kjmb.1207.07020

    Article  Google Scholar 

  • Zhao F, Zhou JD, Ma F, Shi RJ, Han SQ, Zhang J, Zhang Y (2016) Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: applications for microbial enhanced oil recovery. Bioresour Technol 207:24–30. doi:10.1016/j.biortech.2016.01.126

    Article  CAS  Google Scholar 

  • Zwirglmaier K (2005) Fluorescence in situ hybridisation (FISH)—the next generation. FEMS Microbiol Lett 246(2):151–158. doi:10.1016/j.femsle.2005.04.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the Coordination of Improvement of Higher Education Personnel (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane Maria Colla.

Additional information

Responsible editor: Diane Purchase

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decesaro, A., Machado, T.S., Cappellaro, Â.C. et al. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution. Environ Sci Pollut Res 24, 20831–20843 (2017). https://doi.org/10.1007/s11356-017-9778-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9778-7

Keywords

Navigation