Skip to main content
Log in

Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To determine the potential effects of seasonal changes on water temperature and water quality upon removal of ammonium and organic carbon pollutants and to characterize the variations in microbial characteristics, a pilot-scale activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria was investigated for 528 days. The results show that 69.2 ± 28.6% of ammonium and 23.1 ± 11.6% of the dissolved organic carbon were removed by the biologically enhanced activated carbon (BEAC) reactor. It is shown that higher biodegradable dissolved organic carbon enhances ammonium removal, even at low temperatures. The C/N ratio consumed by the BEAC reactor reached a steady value (i.e., 3.3) after 2 months of operation. Despite seasonal fluctuations and competition of the indigenous community, the heterotrophic nitrifying bacteria (Acinetobacter sp. HRBLi 16 and Acinetobacter harbinensis strain HITLi 7) remained relatively stable. The amount of carbon source was the most significant environmental parameter and dramatically affected the microbial community compositions in the BEAC reactor. The present study provides new insights into the application of a BEAC reactor for ammonium removal from drinking water, resisting strong seasonal changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353. doi:10.1038/ismej.2013.16

    Article  CAS  Google Scholar 

  • Andersson A, Laurent P, Kihn A, Prévost M, Servais P (2001) Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment. Water Res 35:2923–2934. doi:10.1016/S0043-1354(00)00579-0

    Article  CAS  Google Scholar 

  • Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, Svoronos SA (1990) Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res 24:97–101. doi:10.1016/0043-1354(90)90070-M

    Article  CAS  Google Scholar 

  • APHA A (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Beutel MW, Leonard TM, Dent SR, Moore BC (2008) Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake. Water Res 42:1953–1962. doi:10.1016/j.watres.2007.11.027

    Article  CAS  Google Scholar 

  • Bożena S, Maria T, Magdalena J, Antoni WM (2006) Biological activation of carbon filters. Water Res 40:355–363. doi:10.1016/j.watres.2005.11.014

    Article  Google Scholar 

  • Chowdhury S (2012) Heterotrophic bacteria in drinking water distribution system: a review. Environ Monit Assess 184:6087–6137. doi:10.1007/s10661-011-2407-x

    Article  CAS  Google Scholar 

  • Escobar IC, Randall AA (2001) Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements. Water Res 35:4444–4454. doi:10.1016/S0043-1354(01)00173-7

    Article  CAS  Google Scholar 

  • Findlay RH, King GM, Watling L (1989) Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl Environ Micro 55:2888–2893

    CAS  Google Scholar 

  • Fonseca AC, Summers RS, Hernandez MT (2001) Comparative measurements of microbial activity in drinking water biofilters. Water Res 35:3817–3824. doi:10.1016/S0043-1354(01)00104-X

    Article  CAS  Google Scholar 

  • Gao YN, Li WG, Zhang DY, Wang GZ (2010) Bio-enhanced activated carbon filter with immobilized microorganisms for removing organic pollutants in the Songhua River. Water Sci Technol 62:2819–2828. doi:10.2166/wst.2010.666

    Article  CAS  Google Scholar 

  • Gehr R, Wagner M, Veerasubramania P, Payment P (2003) Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res 37:4573–4586. doi:10.1016/S0043-1354(03)00394-4

    Article  CAS  Google Scholar 

  • He TX, Li ZL, Sun Q, Xu Y, Ye Q (2016) Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour Technol 200:493–499. doi:10.1016/j.biortech.2015.10.064

    Article  CAS  Google Scholar 

  • Huang XF, Li WG, Zhang DY, Qin W (2013) Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. Bioresour Technol 146:44–50. doi:10.1016/j.biortech.2013.07.046

    Article  CAS  Google Scholar 

  • Joo HS, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J Biosci Bioeng 100:184–191. doi:10.1263/jbb.100.184

    Article  CAS  Google Scholar 

  • Kim WH, Nishijima W, Shoto E, Okada M (1997) Pilot plant study on ozonation and biological activated carbon process for drinking water treatment. Water Sci Technol 35:21–28. doi:10.1016/S0273-1223(97)00147-9

    Google Scholar 

  • Kim DJ, Lee DL, Keller J (2006) Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol 97:459–468. doi:10.1016/j.biortech.2005.03.032

    Article  CAS  Google Scholar 

  • Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, Graham D, Daffonchio D, Fodelianakis S, Hahn N, Boon N, Smets BF (2016) A conceptual framework for invasion in microbial communities. ISME J 10:2773-2775. doi:10.1038/ismej.2016.75

  • Krasner SW, Mitch WA, McCurry DL, Hanigan D, Westerhoff P (2013) Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res 47:4433–4450. doi:10.1016/j.watres.2013.04.050

    Article  CAS  Google Scholar 

  • Laurent P, Prévost M, Cigana J, Niquette P, Servais P (1999) Biodegradable organic matter removal in biological filters: evaluation of the CHABROL model. Water Res 33:1387–1398. doi:10.1016/S0043-1354(98)00356-X

    Article  CAS  Google Scholar 

  • Lee CO, Howe KJ, Thomson BM (2012) Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. Water Res 46:1005–1014. doi:10.1016/j.watres.2011.11.069

    Article  CAS  Google Scholar 

  • Lei Y, Wang YQ, Liu HJ, Xi CW, Song LY (2016) A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium. Appl Microbiol Biot 100:4219–4229. doi:10.1007/s00253-016-7290-5

    Article  CAS  Google Scholar 

  • Li WG, Zhang DY, Huang XF, Qin W (2014) Acinetobacter harbinensis sp. nov., isolated from river water. Int J Syst Evol Micr 64:1507–1513. doi:10.1099/ijs.0.055251-0

    Article  CAS  Google Scholar 

  • Lin JW, Zhan YH, Zhu ZL (2011) Evaluation of sediment capping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release. Sci Total Environ 409:638–646. doi:10.1016/j.scitotenv.2010.10.031

    Article  CAS  Google Scholar 

  • Liu T, Liu SF, Zheng MS, Chen Q, Ni JR (2016) Performance assessment of full-scale wastewater treatment plants based on seasonal variability of microbial communities via high-throughput sequencing. PLoS One 11:e152998. doi:10.1371/journal.pone.0152998

    Google Scholar 

  • McColl RHS (1974) Self-purification of small freshwater streams: phosphate, nitrate, and ammonia removal. New Zeal J Mar Fresh 8:375–388. doi:10.1080/00288330.1974.9515512

    Article  CAS  Google Scholar 

  • McCurry DL, Krasner SW, Von Gunten U, Mitch WA (2015) Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. Water Res 84:161–170. doi:10.1016/j.watres.2015.07.024

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2002) Water and wastewater analysis, Fourth edn. China Environmental Science Press, Beijing

    Google Scholar 

  • Ndiongue S, Huck PM, Slawson RM (2005) Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Res 39:953–964. doi:10.1016/j.watres.2004.12.019

    Article  CAS  Google Scholar 

  • Pharand L, Van Dyke MI, Anderson WB, Yohannes Y, Huck PM (2015) Full-scale ozone-biofiltration: seasonally related effects on NOM removal. J Am Water Works Ass 107:E425–E435. doi:10.5942/jawwa.2015.107.0121

    Article  Google Scholar 

  • Qin W, Li WG, Zhang DY, Huang XF, Song Y (2016a) Ammonium reduction kinetics in drinking water by newly isolated Acinetobacter sp. HITLi 7 at low temperatures. Desalin Water Treat 57:11275–11282. doi:10.1080/19443994.2015.1043649

    Article  CAS  Google Scholar 

  • Qin W, Li WG, Zhang DY, Huang XF, Song Y (2016b) Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria. Environ Sci Pollut R 23:4650–4659. doi:10.1007/s11356-015-5561-9

    Article  CAS  Google Scholar 

  • Qin W, Li WG, Huang XF, Zhang DY, Song Y (2016c) A proteomic analysis of heterotrophic nitrifying bacterium Acinetobacter sp. HITLi 7 T adaptation to low temperature using two-dimensional difference gel electrophoresis approach. Int Biodeter Biodegr 113:113–119. doi:10.1016/j.ibiod.2016.03.009

    Article  CAS  Google Scholar 

  • Russell CG, Blute NK, Via S, Wu XY, Chowdhury Z (2012) Nationwide assessment of nitrosamine occurrence and trends. J Am Water Works Ass 104:E205–E217. doi:10.5942/jawwa.2012.104.0037

    Google Scholar 

  • Suikkanen S, Kaartokallio H, Hällfors S, Huttunen M, Laamanen M (2010) Life cycle strategies of bloom-forming, filamentous cyanobacteria in the Baltic Sea. Deep-Sea Res II Top Stud Oceanogr 57:199–209. doi:10.1016/j.dsr2.2009.09.014

    Article  CAS  Google Scholar 

  • Van Der Gast CJ, Ager D, Lilley AK (2008) Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors. Environ Microbiol 10:1411–1418. doi:10.1111/j.1462-2920.2007.01550.x

    Article  Google Scholar 

  • Velten S, Hammes F, Boller M, Egli T (2007) Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Water Res 41:1973–1983. doi:10.1016/j.watres.2007.01.021

    Article  CAS  Google Scholar 

  • Velten S, Boller M, Köster O, Helbing J, Weilenmann HU, Hammes F (2011) Development of biomass in a drinking water granular active carbon (GAC) filter. Water Res 45:6347–6354. doi:10.1016/j.watres.2011.09.017

    Article  CAS  Google Scholar 

  • von Gunten U (2003) Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37:1469–1487. doi:10.1016/S0043-1354(02)00458-X

    Article  Google Scholar 

  • Wang Y, Chen H, Liu YX, Ren RP, Lv YK (2015) Effect of temperature, salinity, heavy metals, ammonium concentration, pH and dissolved oxygen on ammonium removal by an aerobic nitrifier. RSC Adv 5:79988–79996. doi:10.1039/C5RA13318A

    Article  CAS  Google Scholar 

  • Yao S, Ni JR, Ma T, Li C (2013a) Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour Technol 139:80–86. doi:10.1016/j.biortech.2013.03.189

    Article  CAS  Google Scholar 

  • Yao S, Ni JR, Chen Q, Borthwick AG (2013b) Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature. Bioresour Technol 127:151–157. doi:10.1016/j.biortech.2012.09.098

    Article  CAS  Google Scholar 

  • Zhang JB, Wu PX, Hao B, Yu ZN (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol 102:9866–9869. doi:10.1016/j.biortech.2011.07.118

    Article  CAS  Google Scholar 

  • Zhang DY, Li WG, Gong HN, Zhang L, Gong XJ, Liu BY (2013a) Evaluation of long term stability of seeded bacteria in a bio-enhanced activated carbon filter used for treating drinking water. Int Biodeter Biodegr 85:701–708. doi:10.1016/j.ibiod.2013.03.019

    Article  CAS  Google Scholar 

  • Zhang DY, Li WG, Huang XF, Qin W, Liu M (2013b) Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13. Bioresour Technol 137:147–152. doi:10.1016/j.biortech.2013.03.094

    Article  CAS  Google Scholar 

  • Zhao B, He YL, Hughes J, Zhang XF (2010) Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresour Technol 101:5194–5200. doi:10.1016/j.biortech.2010.02.043

    Article  CAS  Google Scholar 

  • Zhao B, An Q, He YL, Guo JS (2012) N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresour Technol 116:379–385. doi:10.1016/j.biortech.2012.03.113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was carried out at State Key Laboratory of Urban Water Resource and Environment of the School of Municipal and Environmental Engineering, Harbin Institute of Technology. This work was supported by the National Natural Science Foundation, China (grant number 51578178). The authors gratefully acknowledge our colleagues in these programs that have made significant contributions during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Guang Li.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

ESM 1

(PDF 908 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Li, WG., Gong, Xj. et al. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment. Environ Sci Pollut Res 24, 19569–19582 (2017). https://doi.org/10.1007/s11356-017-9522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9522-3

Keywords

Navigation