Skip to main content

Advertisement

Log in

Seasonal variations and source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a mixed multi-function area of Hangzhou, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To reveal the seasonal variations and sources of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during haze and non-haze episodes, daily PM2.5 samples were collected from March 2015 to February 2016 in a mixed multi-function area in Hangzhou, China. Ambient concentrations of 16 priority-controlled PAHs were determined. The sums of PM2.5-bound PAH concentrations during the haze episodes were 4.52 ± 3.32 and 13.6 ± 6.29 ng m−3 in warm and cold seasons, respectively, which were 1.99 and 1.49 times those during the non-haze episodes. Four PAH sources were identified using the positive matrix factorization model and conditional probability function, which were vehicular emissions (45%), heavy oil combustion (23%), coal and natural gas combustion (22%), and biomass combustion (10%). The four source concentrations of PAHs consistently showed higher levels in the cold season, compared with those in the warm season. Vehicular emissions were the most considerable sources that result in the increase of PM2.5-bound PAH levels during the haze episodes, and heavy oil combustion played an important role in the aggravation of haze pollution. The analysis of air mass back trajectories indicated that air mass transport had an influence on the PM2.5-bound PAH pollution, especially on the increased contributions from coal combustion and vehicular emissions in the cold season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akyüz M, Cabuk HC (2009) Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 170:13–21

    Article  Google Scholar 

  • Akyüz M, Cabuk HC (2010) Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408:5550–5558

    Article  Google Scholar 

  • Beyer AI, Wania F, Gouin T, Mackay D, Matthies M (2003) Temperature dependence of the characteristic travel distance. Environ Sci Technol 37:766–771

    Article  CAS  Google Scholar 

  • Callén MS, Lopez JM, Iturmendi A, Mastral AM (2013) Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environ Pollut 183:166–174

    Article  Google Scholar 

  • Friedlander SK (1973) Chemical element balances and identification of air pollution sources. Environ Sci Technol 7:235–240

    Article  CAS  Google Scholar 

  • Gao B, Guo H, Wang XM, Zhao XY, Ling ZH, Zhang Z, Liu TY (2012) Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. J Hazard Mater 239–240:78–87

    Article  Google Scholar 

  • Gao B, Wang XM, Zhao XY (2015) Source apportionment of atmospheric PAHs and their toxicity using PMF: impact of gas/particle partitioning. Atmos Environ 103:114–120

    Article  CAS  Google Scholar 

  • Harrison RM, Smith DJT, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environ Sci Technol 30:825–832

    Article  CAS  Google Scholar 

  • Henry RC (1987) Current factor analysis receptor models are ill-posed. Atmos Environ 21:1815–1820

    Article  CAS  Google Scholar 

  • Huang RJ, Zhang Y, Bozzetti C et al (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222. doi:10.1038/nature13774

    CAS  Google Scholar 

  • Kavouras IG, Lawrence J, Koutrakis P, Stephanou EG, Oyola P (1999) Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: source reconciliation and evaluation of sampling artifacts. Atmos Environ 33:4977–4986

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Khan MF, Latif MT, Lim CH, Amil N, Jaafar SA, Dominick D, Mohd Nadzir MS, Sahani M, Tahir NM (2015) Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmos Environ 106:178–190

    Article  CAS  Google Scholar 

  • Kleinman MT, Pasternack BS, Eisenbud M, Kneip TJ (1980) Identifying and estimating the relative importance of sources of airborne particulates. Environ Sci Technol 14:62–65

    Article  CAS  Google Scholar 

  • Kong S, Li X, Li L, Yin Y, Chen K, Yuan L, Zhang Y, Shan Y, Ji Y (2015) Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: insights of source changes, air mass direction and firework particle injection. Sci Total Environ 520:59–72

    Article  CAS  Google Scholar 

  • Lee J, Kim Y (2007) Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity. Atmos Chem Phys 7:3587–3596

    Article  CAS  Google Scholar 

  • Lee JH, Gigliotti CL, Offenberg JH, Eisenreich SJ, Turpin BJ (2004) Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. Atmos Environ 38:5971–5981

    Article  CAS  Google Scholar 

  • Li RJ, Kou XJ, Geng H, Dong C, Cai ZW (2014) Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan. Chinese Chem Lett 25:663–666

  • Li XX, Kong SF, Yin Y, Li L, Yuan L, Li Q, Xiao H, Chen K (2016) Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing. Atmos Res 174:85–96

    Article  Google Scholar 

  • Liu T, Zhang YH, Xu YJ et al (2014) The effects of dust-haze on mortality are modified by seasons and individual characteristics in Guangzhou, China. Environ Pollut 187:116–123

    Article  Google Scholar 

  • Lu H, Wang SS, Wu ZL, Yao SL, Han JY, Tang XJ, Jiang BQ (2017) Variations of polycyclic aromatic hydrocarbons in ambient air during haze and non-haze episodes in warm seasons in Hangzhou, China. Environ Sci Pollut Res 24:135–145

    Article  CAS  Google Scholar 

  • Lu H, Zhu LZ, Chen SG (2008) Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environ Pollut 152:569–575

    Article  CAS  Google Scholar 

  • Lu H, Zhu LZ, Zhu NL (2009) Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos Environ 43:978–983

    Article  CAS  Google Scholar 

  • Murillo JH, Villalobos MC, Marin JFR, Guerrero VHB, Arias DS (2017) Polycyclic aromatic hydrocarbons in PM2.5 and PM10 atmospheric particles in the metropolitan area of Costa Rica: sources, temporal and spatial variations. Atmos Pollut Res 8:320–327

    Article  Google Scholar 

  • Ohura T, Amagai T, Fusaya M, Matsushita H (2004) Spatial distributions and profiles of atmospheric polycyclic aromatic hydrocarbons in two industrial cities in Japan. Environ Sci Technol 38:49–55

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Ravindra K, Sokhi R, Grieken RV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Riddle SG, Jakober CA, Robert MA, Cahill TM, Charles MJ, Kleeman MJ (2007) Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmos Environ 41:8658–8668

    Article  CAS  Google Scholar 

  • Shao Y, Wang Y, Xu X, Wu X, Jiang Z, He S, Qian K (2014) Occurrence and source apportionment of PAHs in highly vulnerable karst system. Sci Total Environ 490:153–160

    Article  CAS  Google Scholar 

  • Shi GL, Liu GR, Tian YZ, Zhou XY, Peng X, Feng YC (2014) Chemical characteristic and toxicity assessment of particle associated PAHs for the short-term anthropogenic activity event: during the Chinese New Year’s festival in 2013. Sci Total Environ 482:8–14

    Article  Google Scholar 

  • Sun Y, Zhuang GS, Tang AH, Wang Y, An ZS (2006) Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol 40:3148–3155

    Article  CAS  Google Scholar 

  • Tan JH, Guo SJ, Ma YL, Duan JC, Cheng Y, He KB, Yang FM (2011) Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmos Res 102:91–98

    Article  CAS  Google Scholar 

  • Tauler R, Viana M, Querol X, Alastuey A, Flight RM, Wentzell PD, Hopke PK (2009) Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos Environ 43:3989–3997

    Article  CAS  Google Scholar 

  • Terzi E, Samara C (2004) Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece. Environ Sci Technol 38:4973–4978

    Article  CAS  Google Scholar 

  • Tian FL, Chen JW, Qiao XL, Wang Z, Yang P, Wang DG, Ge LK (2009) Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: factor analysis with non-negative constraints combined with local source fingerprints. Atmos Environ 43:2747–2753

    Article  CAS  Google Scholar 

  • Vingarzan R, Li SM (2006) The Pacific 2001 air quality study—synthesis of findings and policy implications. Atmos Environ 40:2637–2649

    Article  CAS  Google Scholar 

  • Vione D, Barra S, de Gennaro G, de Rienzo M, Gilardoni S, Perrone MG, Pozzoli L (2004) Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. II: sinks and fate. Ann Chim 94:257–268

    Article  CAS  Google Scholar 

  • Wang D, Tian F, Yang M, Liu C, Li YF (2009) Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environ Pollut 157:1559–1564

    Article  CAS  Google Scholar 

  • Wang J, Hu Z, Chen Y, Chen Z, Xu S (2013) Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos Environ 68:221–229

    Article  CAS  Google Scholar 

  • Wang J, Li X, Jiang N, Zhang WK, Zhang RQ, Tang XY (2015) Long term observations of PM2.5-associated PAHs: comparisons between normal and episode days. Atmos Environ 104:228–236

    Article  CAS  Google Scholar 

  • Wang Q, Liu M, Yu YP, Li Y (2016) Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China. Environ Pollut 218:118–128

    Article  CAS  Google Scholar 

  • Xie MJ, Wang GH, Hu SY, Han QY, Xu YJ, Gao ZC (2009) Aliphatic alkanes and polycyclic aromatic hydrocarbons in atmospheric PM10 aerosols from Baoji, China: implications for coal burning. Atmos Res 93:840–848

    Article  CAS  Google Scholar 

  • Yang TT, Hsu CY, Chen YC, Young LH, Huang CH, Ku CH (2017) Characteristics, sources, and health risks of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol Air Qual Res 17:563–573

    Article  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang F, Wang ZW, Cheng HR, Lv XP, Gong W, Wang XM, Zhang G (2015a) Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci Total Environ 518-519:97–105

    Article  CAS  Google Scholar 

  • Zhang FW, Xu LL, Chen JS, Chen XQ, Niu ZC, Lei T, Li CM, Zhao JP (2013) Chemical characteristics of PM2.5 during haze episodes in the urban of Fuzhou, China. Particuology 11:264–272

    Article  Google Scholar 

  • Zhang H, Hu D, Chen J, Ye X, Wang SX, Hao JM, Wang L, Zhang R, An Z (2011) Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. Environ Sci Technol 45:5477–5482

    Article  CAS  Google Scholar 

  • Zhang QA, Shen ZX, Cao JJ et al (2015b) Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos Environ 112:64–71

    Article  CAS  Google Scholar 

  • Zhang Y, Guo CS, Xu J, Tian YZ, Shi GL, Feng YC (2012) Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: comparison of three receptor models. Water Res 46:3065–3073

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S, Cao J, Coveney RM (2007) Emission of polycyclic aromatic hydrocarbons in China by county. Environ Sci Technol 41:683–687

    Article  CAS  Google Scholar 

  • Zhu LZ, Lu H, Chen SG, Amagai T (2009) Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. J Hazard Mater 162:1165–1170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Science and Technology Department of Zhejiang Province (2016C33015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Lu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Wang, S., Li, Y. et al. Seasonal variations and source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in a mixed multi-function area of Hangzhou, China. Environ Sci Pollut Res 24, 16195–16205 (2017). https://doi.org/10.1007/s11356-017-9265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9265-1

Keywords

Navigation