Skip to main content
Log in

Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals

  • Chemistry, Activity and Impact of Plant Biocontrol products
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacteria belonging to the genus Burkholderia live in various ecological niches and present a significant role in the environments through the excretion of a wide variety of secondary metabolites including modular nonribosomal peptides (NRPs) and polyketides (PKs). These metabolites represent a widely distributed biomedically and biocontrol important class of natural products including antibiotics, siderophores, and anticancers as well as biopesticides that are considered as a novel source that can be used to defend ecological niche from competitors and to promote plant growth. The aim of this review is to present all NRPs produced or potentially produced by strains of Burkholderia, as NRPs represent a major source of active compounds implicated in biocontrol. The review is a compilation of results from a large screening we have performed on 48 complete sequenced genomes available in NCBI to identify NRPS gene clusters, and data found in the literature mainly because some interesting compounds are produced by strains not yet sequenced. In addition to NRPs, hybrids NRPs/PKs are also included. Specific features about biosynthetic gene clusters and structures of the modular enzymes responsible for the synthesis, the biological activities, and the potential uses in agriculture and pharmaceutical of NRPs and hybrids NRPs/PKs will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe M, Nakazawa T (1994) Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol Immunol 38:1–9. doi:10.1111/j.1348-0421.1994.tb01737.x

    Article  CAS  Google Scholar 

  • Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA (2012) Catecholate Siderophores protect Bacteria from Pyochelin toxicity. PLoS One 7:e46754. doi:10.1371/journal.pone.0046754

    Article  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. doi:10.1016/s0168-6445(03)00055-x

    Article  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. doi:10.1104/pp.103.028712

    Article  CAS  Google Scholar 

  • Balibar CJ, Vaillancourt FH, Walsh CT (2005) Generation of D amino acid residues in assembly of Arthrofactin by dual condensation/epimerization domains. Chem Biol 12:1189–1200. doi:10.1016/j.chembiol.2005.08.010

    Article  CAS  Google Scholar 

  • Barelmann I, Meyer J-M, Taraz K, Budzikiewicz H (1996) Cepaciachelin, a new Catecholate Siderophore from Burkholderia (Pseudomonas) Cepacia. Z Naturforsch 51C:627–630

    Article  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016

    Article  CAS  Google Scholar 

  • Biggins JB, Gleber CD, Brady SF (2011a) Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. Org Lett 13:1536–1539. doi:10.1021/ol200225v

    Article  CAS  Google Scholar 

  • Biggins JB, Liu X, Feng Z, Brady SF (2011b) Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J Am Chem Soc 133:1638–1641. doi:10.1021/ja1087369

    Article  CAS  Google Scholar 

  • Biggins JB, Ternei MA, Brady SF (2012) Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 134:13192–13195. doi:10.1021/ja3052156

    Article  CAS  Google Scholar 

  • Biggins JB, Kang H-S, Ternei MA, DeShazer D, Brady SF (2014) The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. J Am Chem Soc 136:9484–9490. doi:10.1021/ja504617n

    Article  CAS  Google Scholar 

  • Bisacchi GS, Hockstein DR, Koster WH, Parker WL, Rathnum ML, Unger SE (1987) Xylocandin: a new complex of antifungal peptides. II. Structural studies and chemical modifications. J Antibiot 40:1520–1529. doi:10.7164/antibiotics.40.1520

    Article  CAS  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319. doi:10.1128/AEM.00324-07

    Article  CAS  Google Scholar 

  • Caradec T, Pupin M, Vanvlassenbroeck A, Devignes M-D, Smaïl-Tabbone M, Jacques P, Leclère V (2014) Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery. PLoS One 9:e85667. doi:10.1371/journal.pone.0085667

    Article  CAS  Google Scholar 

  • Carr G, Seyedsayamdost MR, Chandler JR, Greenberg EP, Clardy J (2011) Sources of diversity in Bactobolin Biosynthesis by Burkholderia thailandensis E264. Org Lett 13:3048–3051. doi:10.1021/ol200922s

    Article  CAS  Google Scholar 

  • Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287. doi:10.1073/pnas.0606924103

    Article  Google Scholar 

  • Chen W-M, James EK, Coenye T, Chou J-H, Barrios E, De Faria SM, Elliott GN, Sheu S-Y, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851. doi:10.1099/ijs.0.64325-0

    Article  CAS  Google Scholar 

  • Chen W-M, De Faria SM, James EK, Elliott GN, Lin K-Y, Chou J-H, Sheu S-Y, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059. doi:10.1099/ijs.0.64873-0

    Article  CAS  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in Pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. doi:10.1007/s00253-010-2550-2

    Article  CAS  Google Scholar 

  • Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364

    CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530

    CAS  Google Scholar 

  • Czárán TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci 99:786–790. doi:10.1073/pnas.012399899

    Article  CAS  Google Scholar 

  • Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877

    CAS  Google Scholar 

  • Du L, Sánchez C, Shen B (2001) Hybrid peptide–polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3:78–95. doi:10.1006/mben.2000.0171

    Article  CAS  Google Scholar 

  • Ellis D, Gosai J, Emrick C, Heintz R, Romans L, Gordon D, Lu S-E, Austin F, Smith L (2012) Occidiofungin’s chemical stability and in vitro potency against Candida species. Antimicrob Agents Chemother 56:765–769. doi:10.1128/aac.05231-11

    Article  CAS  Google Scholar 

  • Esmaeel Q, Pupin M, Kieu NP, Chataigné G, Béchet M, Deravel J, Krier F, Höfte M, Jacques P, Leclère V (2016) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. MicrobiologyOpen 5(3):512–526. doi:10.1002/mbo3.347

    Article  CAS  Google Scholar 

  • Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of Burkholderic acid, a Noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem Int Ed 51:11611–11615. doi:10.1002/anie.201205566

    Article  CAS  Google Scholar 

  • Franke J, Ishida K, Ishida-Ito M, Hertweck C (2013) Nitro versus hydroxamate in siderophores of pathogenic bacteria: effect of missing hydroxylamine protection in malleobactin biosynthesis. Angew Chem Int Ed 52:8271–8275. doi:10.1002/anie.201303196

    Article  CAS  Google Scholar 

  • Franke J, Ishida K, Hertweck C (2014) Evolution of Siderophore pathways in human pathogenic Bacteria. J Am Chem Soc 136:5599–5602. doi:10.1021/ja501597w

    Article  CAS  Google Scholar 

  • Gu G, Smith L, Wang N, Wang H, Lu S-E (2009) Biosynthesis of an antifungal oligopeptide in Burkholderia contaminans strain MS14. Biochem Biophys Res Commun 380:328–332. doi:10.1016/j.bbrc.2009.01.073

    Article  CAS  Google Scholar 

  • Gu G, Smith L, Liu A, Lu S-E (2011) Genetic and biochemical map for the Biosynthesis of Occidiofungin, an antifungal produced by Burkholderia contaminans strain MS14. Appl Environ Microbiol 77:6189–6198. doi:10.1128/aem.00377-11

    Article  CAS  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 48:4688–4716. doi:10.1002/anie.200806121

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. doi:10.1039/B906679A

    Article  CAS  Google Scholar 

  • Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528. doi:10.1099/00221287-147-9-2517

    Article  CAS  Google Scholar 

  • Ishida K, Lincke T, Behnken S, Hertweck C (2010) Induced biosynthesis of cryptic polyketide metabolites in a Burkholderia thailandensis quorum sensing mutant. J Am Chem Soc 132:13966–13968. doi:10.1021/ja105003g

    Article  CAS  Google Scholar 

  • Jain A, Liu X, Wordinger RJ, Yorio T, Cheng Y-Q, Clark AF (2013) Effects of thailanstatins on glucocorticoid response in trabecular meshwork and steroid-induced glaucoma. Invest Ophthalmol Vis Sci 54:3137

    Article  CAS  Google Scholar 

  • Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in Biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in Biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939–3947

    CAS  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590. doi:10.1046/j.1365-2958.2003.03584.x

    Article  CAS  Google Scholar 

  • Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011) Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genomics 12:1–13. doi:10.1186/1471-2164-12-210

    Article  CAS  Google Scholar 

  • Lafontaine JA, Provencal DP, Gardelli C, Leahy JW (2003) Enantioselective total synthesis of the antitumor macrolide rhizoxin D. J Org Chem 68:4215–4234. doi:10.1021/jo034011x

    Article  CAS  Google Scholar 

  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483. doi:10.1007/s00203-006-0163-z

    Article  CAS  Google Scholar 

  • Lee CH, Kim S, Hyun B, Suh JW, Yon C, Kim C, Lim Y, Kim C (1994) Cepacidine a, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J Antibiot 47:1402–1405. doi:10.7164/antibiotics.47.1402

    Article  CAS  Google Scholar 

  • Lee CH, Suh JW, Cho YH (1999) Immunosuppressive activity of cepacidine a, a novel antifungal antibiotic produced by Pseudomonas cepacia. J Microbiol Biotechnol 9:672–674

    CAS  Google Scholar 

  • Lee CH, Kempf HJ, Lim Y, Cho YH (2000) Biocontrol activity of Pseudomonas cepacia AF2001 and anthelmintic activity of its novel metabolite, cepacidine A. J Microbiol Biotechnol 10:568–571

    CAS  Google Scholar 

  • Lewenza S, Conway B, Greenberg E, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756

    CAS  Google Scholar 

  • Lim Y, J-w S, Kim S, Hyun B, Kim C, Lee C-h (1994) Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II Physico-chemical properties and structure elucidation. J Antibiot 47:1406–1416. doi:10.7164/antibiotics.47.1406

    Article  CAS  Google Scholar 

  • Lin Z, Falkinham JO III, Tawfik KA, Jeffs P, Bray B, Dubay G, Cox JE, Schmidt EW (2012) Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. J Nat Prod 75:1518–1523. doi:10.1021/np300108u

    Article  CAS  Google Scholar 

  • Liu X, Biswas S, Berg MG, Antapli CM, Xie F, Wang Q, Tang M-C, Tang G-L, Zhang L, Dreyfuss G (2013) Genomics-guided discovery of thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod 76:685–693. doi:10.1021/np300913h

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74. doi:10.1128/aem.02848-07

    Article  CAS  Google Scholar 

  • Lu SE, Novak J, Austin FW, Gu G, Ellis D, Kirk M, Wilson-Stanford S, Tonelli M, Smith L (2009) Occidiofungin, a unique antifungal Glycopeptide produced by a strain of Burkholderia contaminans. Biochemist 48:8312–8321. doi:10.1021/bi900814c

    Article  CAS  Google Scholar 

  • Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. doi:10.1038/nrmicro1085

    Article  CAS  Google Scholar 

  • Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551. doi:10.1111/j.1365-2672.2007.03706.x

    Article  CAS  Google Scholar 

  • Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807. doi:10.1002/psc.1183

    Article  CAS  Google Scholar 

  • Meyers E, Bisacchi G, Dean L, Liu W, Minassian B, Slusarchyk D, Sykes R, Tanaka S, Trejo W (1987) Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J Antibiot 40:1515–1519. doi:10.7164/antibiotics.40.1515

    Article  CAS  Google Scholar 

  • Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L (2016) Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. Front Plant Sci 7. doi:10.3389/fpls.2016.01236

  • Nakajima H, Hori Y, Terano H, Okuhara M, Manda T, Matsumoto S, Shimomura K (1996) New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot 49:1204–1211

    Article  CAS  Google Scholar 

  • Nakajima H, Takase S, Terano H, Tanaka H (1997) New antitumor substances, FR901463, FR901464 and FR901465. III. Structures of FR901463, FR901464 and FR901465. J Antibiot 50:96–99. doi:10.7164/antibiotics.50.96

    Article  CAS  Google Scholar 

  • Oka M, Nishiyama Y, Ohta S, Kamei H, Konishi M, Miyaki T, Oki T, Kawaguchi H (1988) Glidobactins a, B and C, new antitumor antibiotics. I. Production, isolation, chemical properties and biological activity. J Antibiot 41:1331–1337. doi:10.7164/antibiotics.41.1331

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009

    Article  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888. doi:10.1038/nature03997

    Article  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2007) A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem 8:41–45. doi:10.1002/cbic.200600393

    Article  CAS  Google Scholar 

  • Partida-Martinez LP, de Looß CF, Ishida K, Ishida M, Roth M, Buder K, Hertweck C (2007) Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl Environ Microbiol 73:793–797. doi:10.1128/AEM.01784-06

    Article  CAS  Google Scholar 

  • Pupin M, Esmaeel Q, Flissi A, Dufresne Y, Jacques P, Leclère V (2015) Norine: a powerful resource for novel nonribosomal peptide discovery. Synth Syst Biotechnol. doi:10.1016/j.synbio.2015.11.001

    Article  CAS  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11. doi:10.1111/j.1574-6968.2005.00001.x

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. doi:10.1093/jac/dkl024

    Article  CAS  Google Scholar 

  • Royer M, Koebnik R, Marguerettaz M, Barbe V, Robin G, Brin C, Carrere S, Gomez C, Hugelland M, Voller G, Noell J, Pieretti I, Rausch S, Verdier V, Poussier S, Rott P, Sussmuth R, Cociancich S (2013) Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics 14:658. doi:10.1186/1471-2164-14-658

    Article  CAS  Google Scholar 

  • Schellenberg B, Bigler L, Dudler R (2007) Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ Microbiol 9:1640–1650. doi:10.1111/j.1462-2920.2007.01278.x

    Article  CAS  Google Scholar 

  • Schett G, Sloan VS, Stevens RM, Schafer P (2010) Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther Adv Musculoskelet Dis 2:271–278. doi:10.1177/1759720x10381432

    Article  CAS  Google Scholar 

  • Schlegel K, Taraz K, Budzikiewicz H (2004) The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals 17:409–414

    Article  CAS  Google Scholar 

  • Seyedsayamdost MR, Chandler JR, Blodgett JAV, Lima PS, Duerkop BA, Oinuma K-I, Greenberg EP, Clardy J (2010) Quorum-sensing-regulated Bactobolin production by Burkholderia thailandensis E264. Org Lett 12:716–719. doi:10.1021/ol902751x

    Article  CAS  Google Scholar 

  • Sharma A, Johri B (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS 9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248. doi:10.1078/0944-5013-00197

    Article  CAS  Google Scholar 

  • Shoji J, Hinoo H, Kato T, Hattori T, Hirooka K, Tawara K, Shiratori O, Terui Y (1990) Isolation of cepafungins I, II and III from Pseudomonas species. J Antibiot 43:783–787. doi:10.7164/antibiotics.43.783

    Article  CAS  Google Scholar 

  • Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of Ornibactin Biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the Gene encoding l-ornithine N(5)-oxygenase. Infect Immun 67:4443–4455

    CAS  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416. doi:10.1039/a909079g

    Article  CAS  Google Scholar 

  • Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO III, Mesbah M, Youssef D, Khalifa S, Schmidt EW (2010) Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2 N. Org Lett 12:664–666. doi:10.1021/ol9029269

    Article  CAS  Google Scholar 

  • Thomas MS (2007) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20:431–452. doi:10.1007/s10534-007-9100-0

    Article  CAS  Google Scholar 

  • Thomson ELS, Dennis JJ (2012) A Burkholderia cepacia complex non-ribosomal peptide-synthesized toxin is hemolytic and required for full virulence. Virulence 3:286–298. doi:10.4161/viru.19355

    Article  Google Scholar 

  • Tseng C-F, Burger A, Mislin GL, Schalk IJ, Yu SS-F, Chan SI, Abdallah MA (2006) Bacterial siderophores: the solution stoichiometry and coordination of the Fe (III) complexes of pyochelin and related compounds. JBIC, J Biol Inorg Chem 11:419–432. doi:10.1007/s00775-006-0088-7

    Article  CAS  Google Scholar 

  • Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9:252–260. doi:10.1016/j.mib.2006.04.002

    Article  CAS  Google Scholar 

  • Van Vliet AH, Wooldridge KG, Ketley JM (1998) Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298

    CAS  Google Scholar 

  • VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH (2011) Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J Antibiot 64:525–531

    Article  CAS  Google Scholar 

  • Vial L, Groleau M-C, Dekimpe V, Déziel É (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429

    CAS  Google Scholar 

  • Visser M, Majumdar S, Hani E, Sokol P (2004) Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72:2850–2857. doi:10.1128/IAI.72.5.2850-2857.2004

    Article  CAS  Google Scholar 

  • Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10. doi:10.1021/ar7000414

    Article  CAS  Google Scholar 

  • Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes F-J, Cheng Y-Q (2011) Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 74:2031–2038. doi:10.1021/np200324x

    Article  CAS  Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucl Acids Res. doi:10.1093/nar/gkv437

    Article  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. Nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiol Immunol 36:1251–1275. doi:10.1111/j.1348-0421.1992.tb02129.x

    Article  CAS  Google Scholar 

  • Zhou H, Yao F, Roberts DP, Lessie TG (2003) AHL-deficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr Microbiol 47:0174–0179. doi:10.1007/s00284-002-3926-z

    Article  CAS  Google Scholar 

  • Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based Bioinformatic tool to classify secondary metabolite Gene diversity. PLoS One 7:e34064. doi:10.1371/journal.pone.0034064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Lille 1, the INTERREG IVa program France-Wallonie-Vlaanderen (Phytobio project), the INTERREGVa program (SmartBioControle/BioScreen project), and the bioinformatics platform bilille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Leclère.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeel, Q., Pupin, M., Jacques, P. et al. Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environ Sci Pollut Res 25, 29794–29807 (2018). https://doi.org/10.1007/s11356-017-9166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9166-3

Keywords

Navigation