Skip to main content

Advertisement

Log in

Exogenous phosphatidylcholine supplementation retrieve aluminum-induced toxicity in male albino rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the ameliorative potential of exogenous phosphatidylcholine (PC) against aluminum-induced toxicity in male albino rats. Four groups of rats were used for this study (N = 8): group I served as the control, group II (PC treated) received l-α-phosphatidylcholine (egg yolk-derived) 100 mg/kg bwt/day orally, group III (aluminum treated) received aluminum chloride 100 mg/kg bwt/day orally, and group VI (aluminum + PC treated) received similar oral dose of aluminum and PC (100 mg/kg bwt/day). Treatment was continued for 8 weeks. Results revealed that aluminum chloride treatment leading to a significant elevation in serum aspartate aminotransferase, serum alanine aminotransferase, urea, creatinine, malondialdehyde, serum cytokines (tumor necrosis factor-α, interleukin-6), and brain content of acetylcholine, as well as a significant reduction in serum-reduced glutathione, serum testosterone, and brain content of acetylcholinesterase. Moreover, aluminum administration caused significant histopathological alteration in liver, kidney, brain, testes, and epididymis. Co-treatment with exogenous PC resulted in significant improvement in intensity of histopathologic lesions, serum parameters, testosterone level, proinflammatory cytokines, and oxidative/antioxidative status. However, it does not affect the brain content of acetylcholine and acetylcholinesterase. Conclusively, treatment with exogenous PC can retrieve the adverse effect of aluminum toxicities through its antioxidative and anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah DM, Eid NI (2004) Possible neuroprotective effects of lecithin and alpha-tocopherol alone or in combination against ischemia/reperfusion insult in rat brain. J Biochem Mol Toxicol 18(5):273–278

    Article  Google Scholar 

  • Abdel-Moneim AM (2013) Effects of taurine against histomorphological and ultrastructural changes in the testes of mice exposed to aluminum chloride. Arh Hig Rada Toksikol 64:405–414

    CAS  Google Scholar 

  • Agarwal DR, Jain S (2011) Significant liver toxicity in albino rats upon oral aluminum administration: a serious public health implication. J Anat Soc India 60:46–49

    Article  Google Scholar 

  • Akeson M, Munns DN, Burau RG (1989) Adsorption of Al3 + to phospahtidylcholine vesicles. Biochim Biophys Acta 986:33–40

    Article  CAS  Google Scholar 

  • Al-Orf SM (2011) Effect of oxidized phosphatidylcholine on biomarkers of oxidative stress in rats. Indian J Clin Biochem 26:154–160

    Article  CAS  Google Scholar 

  • Al-Qayim AJM, Saadoon D (2013) Assessment of the ameliorative role of proplis and malic acid in intestinal and liver functions of alumi num exposed male rats. Int J Sci Nat 4:552–558

    CAS  Google Scholar 

  • Altschuler E (1999) Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease. Med Hypotheses 53:22–23

    Article  CAS  Google Scholar 

  • Anane R, Creppy E (2001) Lipid peroxidation as pathway of aluminum cytotoxicity in human skin fibroblast cultures: prevention by super oxide dismutase catalase and vitamins E and C. Hum Exp Toxicol 20:477–481

    Article  CAS  Google Scholar 

  • ATSDR (1990) Agency for toxic substances and disease registry. Toxicological profile for aluminum, US Department of Health and Human Services. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=191&tid=34.

  • Bancroft JD, Stevens A (1996) Theory and practice of histological technique, 4th edn. Churchill Livingstone, New York

    Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–890

    CAS  Google Scholar 

  • Bhalla P, Dhawan DK (2009) Protective role of lithium in ameliorating the aluminum-induced oxidative stress and histological changes in rat brain. Cell Mol Neurobiol 29:513–521

    Article  CAS  Google Scholar 

  • Blusztajn JK, Zeisel SH, Wurtman RJ (1979) Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain Res 179:319–327

    Article  CAS  Google Scholar 

  • Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC (2004) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75(4):565–572

    Article  CAS  Google Scholar 

  • Chung SY, Moriyama T, Uezu E, Uezu K, Hirata R, Yohena N, Masuda Y, Kokubu T, Yamamoto S (1995) Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr 125:1484–1489

    CAS  Google Scholar 

  • Das UN (2011) Infection, inflammation, and polyunsaturated fatty acids. Nutrition 27:1080–1084

    Article  Google Scholar 

  • Demetrious JA (1987) Testosterone in methods. In: Methods in clinical chemistry, Pesce, A.J. and L.A. Kaplan (Eds.). Mosby, Los Angles, CA., ISBN: 9780801638299, pp: 268

  • Dua R, Kumar V, Sunkaria A, Gill KD (2010) Altered glucose homeostasis in response to aluminium phosphide induced cellular oxygen deficit in rat. Indian J Exp Biol 48:722–730

    CAS  Google Scholar 

  • El-Demerdash FM (2004) Antioxidant effect of vitamin E and selenium onlipid peroxidation, enzyme activities andbiochemical parameters in rats exposed to aluminum. J Trace Elem Med Biol 18:113–121

    Article  CAS  Google Scholar 

  • Eros G, Varga G, Váradi R, Czóbel M, Kaszaki J, Ghyczy M, Boros M (2009) Anti-inflammatory action of a phosphatidylcholine, phosphatidylethanolamine and N-acylphosphatidylethanolamine-enriched diet in carrageenan-induced pleurisy. Eur Surg Res 42:40–48

    Article  CAS  Google Scholar 

  • Exley C (2004) The pro-oxidant activity of aluminum. Free Radic Biol Med 36:380–387

    Article  CAS  Google Scholar 

  • Fabiny DL, Ertingshausen G (1971) Automated reaction-rate method for determination of serum creatinine with the CentrifiChem. Clin Chem 17:696–700

    CAS  Google Scholar 

  • Fallbrook A, Turenne SD, Mamalias N, Kish SJ, Ross BM (1999) Phosphatidylcholine and phosphatidylethanolamine metabolites may regulate brain phospholipid catabolism via inhibition of lysophospholipase activity. Brain Res 834:207–210

    Article  CAS  Google Scholar 

  • Geyikoglu F, Turkez H, Bakir TO, Cicek M (2013) The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication. Toxicology and Industrial Health

  • Guo CH, Lin CY, Yeh MS, Hsu GSW (2006) Aluminum-induced suppression of testosterone through nitric oxide production in male mice. Environ Toxicol Pharmacol 19:33–40

    Article  Google Scholar 

  • Harsha SN, Anilakumar KR (2013) Protection against aluminum neurotoxicity: a repertoire of lettuce antioxidants. Biomedicine and Aging Pathol 3:179–184

    Article  CAS  Google Scholar 

  • Hartmann P, Szabó A, Eros G, Gurabi D, Horváth G, Németh I, Ghyczy M, Boros M (2009) Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur J Pharmacol 622:58–54

    Article  CAS  Google Scholar 

  • Hofstetter JR, Vincent I, Bugiani O, Ghetti B, Richter JA (1987) Aluminium-induced decreases in choline acetyltransferase, tyrosine hydroxylase, and glutamate decarboxylase in selected regions of rabbit brain. Neurochem Pathol 6:177–193

    Article  CAS  Google Scholar 

  • Ige SF, Akhigbe RE (2012) The role of Allium cepa on aluminum-induced reproductive dysfunction in experimental male rat models. J Hum Reprod Sci 5:200–205

    Article  Google Scholar 

  • John J, Nampoothiri M, Kumar N, Mudgal J, Kutty Nampurath G, Rao Chamallamudi M (2015) Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats. Pharmacogn Mag 11(42):327–336

    Article  CAS  Google Scholar 

  • Johnson VJ, Sharma RP (2003) Aluminum disrupts the proinflammatory cytokine/neurotrophin balance in primary brain rotation-mediated aggregate cultures: possible role in neurodegeneration. Neurotoxicology 24:261–268

    Article  CAS  Google Scholar 

  • Jope RS (1982) Effects of phosphatidylcholine administration to rats on choline in blood and choline and acetylcholine in brain. J Pharmac exp Ther 220:322–328

    CAS  Google Scholar 

  • Jope RS, Jenden DJ, Subramanian CS, Dhopeshwarker GA, Duncan D (1984) Biochemical effects of phosphatidylcholine treatment in rats. Biochem Pharmacol 33(5):793–798

    Article  Google Scholar 

  • Julka D, Sandhir R, Gill KD (1995) Altered cholinergic metabolism in rat CNS following aluminum exposure: implications on learning performance. J Neurochem 65:2157–2164

    Article  CAS  Google Scholar 

  • Jung YY, Nam Y, Park YS, Lee HS, Hong SA, Kim BK, Park ES, Chung YH, Jeong JH (2013) Protective effect of phosphatidylcholine on lipopolysaccharide induced acute inflammation in multiple organ injury. Korean J Physiol Pharmacol 17:209–216

    Article  CAS  Google Scholar 

  • Kaizer RR, Correa RM, Spanevello VM, Morsch CM, Mazzanti JF, Goncalves JF et al (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  CAS  Google Scholar 

  • Kaizer RR, Corrêa MC, Gris LR, da Rosa CS, Bohrer D, Morsch VM et al (2008) Effect of long-term exposure to aluminium on the acetylcholinesterase activity in the central nervous system and erythrocytes. Neurochem Res 33:2294–2301

    Article  CAS  Google Scholar 

  • Kalaiselvi A, Suganthy OM, Govindassamy P, Vasantharaja D, Gowri B, Ramalingam V (2014) Influence of aluminum chloride on antioxidant system in the testis and epididymis of rats. Iranian J Toxicol 8:991–997

    Google Scholar 

  • Karaman A, Demirbilek S, Sezgin N, Gürbüz N, Gürses I (2013) Protective effect of polyunsaturated phosphatidylcholine on liver damage induced by biliary obstruction in rats. J Pediatr Surg 38(9):1341–1347

    Article  Google Scholar 

  • Khattab F (2007) Histological and ultrastructural studies on the testis of rat after treatment with aluminum chloride. Aust J Basic Appl Sci 1:63–72

    CAS  Google Scholar 

  • Kim ST, Chung YH, Lee HS, Chung SJ, Lee JH, Sohn UD, Shin YK, Park ES, Kim HC, Bang JS, Jeong JH (2015) Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci 130:81–87. doi:10.1016/j.lfs.2015.03.013

    Article  CAS  Google Scholar 

  • Ko M, Hattori T, Abdullah M, Gong JS, Yamane T, Michikawa M (2016) Phosphatidylcholine protects neurons from toxic effects of amyloid β-protein in culture. Brain Res 1642:376–383

    Article  CAS  Google Scholar 

  • Kumar A, Dogra S, Prakash A (2009) Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioral and biochemical alterations in rats. Behav Brain Res 205:384–390

    Article  CAS  Google Scholar 

  • Lee HS, Kim BK, Nam Y, Jeong JH (2013) Protective role of phosphatidylcholine against cisplatin-induced renal toxicity and oxidative stress in rats. Food Chem Toxicol 58:388–393

    Article  CAS  Google Scholar 

  • Mahran AA, Abdel-Rahman AH, Abd ElMawla AM (2011) Role of propolis in improving male ratfertility affected with aluminum chloride cytotoxicity. Spatula DD 1:189–198

    Article  Google Scholar 

  • Mohammadirad A, Abdoallahi M (2011) A systemic review on oxidant/ antioxidant imbalance in aluminum toxicity. Int J Pharm 7:12

    Article  CAS  Google Scholar 

  • Navder KP, Baraona E, Lieber CS (2000) Dilinoleoylphosphatidylcholineprotects human low density lipoproteins against oxidation. Atherosclerosis 152:89–95

    Article  CAS  Google Scholar 

  • Nehru B, Anand P (2005) Oxidative damage following chronic alumi numexposureinadultandpupratbrains. JTraceElemMedBiol 19:203–208

    CAS  Google Scholar 

  • Newairy AS, Salama AF, Hussien HM, Yousef MI (2009) Propolis alleviates aluminum-induced lipid peroxidation and biochemical parameters in male rats. Food Chem Toxicol 47:1093–1098

    Article  CAS  Google Scholar 

  • Ninh T, Nguyen MD, Scott Braley MD (2003) Comparison of postoperative hepatic functions after laparoscopic versus opengastric bypass. Am J Surg 186:40–44

    Article  Google Scholar 

  • Ochmanski W, Barabasz W (2000) Aluminum-occurrence and toxicity for organisms. Przegl Lek 57:665–668

    CAS  Google Scholar 

  • Oda SS (2016) The influence of omega3 fatty acids supplementation against aluminum-induced toxicity in male albino rats. Environ Sci Pollut Res 23(14):14354–14361. doi:10.1007/s11356-016-6578-4

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Annals of Bioch 95:351–358

    Article  CAS  Google Scholar 

  • Orr SK, Trépanier MO, Bazinet RP (2013) N-3 polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fat Acids 88:97–103

    Article  CAS  Google Scholar 

  • Palacios JM, Kuhar MJ (1979) Mol Pharm 16:1084

    CAS  Google Scholar 

  • Platt B, Fiddler G, Riedel G, Henderson Z (2001) Aluminum toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull 55:257–267

    Article  CAS  Google Scholar 

  • Podobed OV, Fedorova LM, Iakusheva IV, Abakumova OI, Tsvetkova TA, Kovaleva GG, Gavril’chak AV, Shekhter AB (1995) The effect of phosphatidylcholine on repair processes in liver cells in acute CCl4 damage. Vopr Med Khim 41(1):13–16

    CAS  Google Scholar 

  • Proudfoot AT (2009) Aluminium and zinc phosphide poisoning. Clin Toxicol (Phila) 47:89–100

    Article  CAS  Google Scholar 

  • Qiu P, Cui X, Barochia A, Li Y, Natanson C, Eichacker PQ (2011) The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death. Expert Opin Investig Drugs 20:1555–1564

    Article  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for determination of oxaloacetic transaminase and serum glutamic pyruvic transaminase. Am J Clin Pathol 28:56–63

    Article  CAS  Google Scholar 

  • Rey JW, Schreiner O, Barreiros AP, Heise M, Krupp M, Schuchmann M, Otto G, Galle PR, Teufel A (2011) Acute renal failure and liver dysfunction after subcutaneous injection of 3-sn-phosphatidylcholine (Lipostabil®)—case report. Z Gastroenterol 49:340–343

    Article  CAS  Google Scholar 

  • SAS (2002) Statistical analysis system. Version 9. SAS Institute Inc, Cary

    Google Scholar 

  • Shehla KF, Prabhavathi PA, Padmavathi P, Reddy PP (2001) Analysis of chromosomal aberrations in men occupationally exposed to cement dust. Mutat Res 490:179–186

    Article  Google Scholar 

  • Singla N, Dhawan DK (2012) Regulatory role of zinc during aluminium-induced altered carbohydrate metabolism in rat brain. J Neurosci Res 90:698–705

    Article  CAS  Google Scholar 

  • Stojanovic I, Ninkovic M (2009) Effect of L-NAME on AlCl3-induced toxicity in rat brain. Beograd 59:133–146

    Google Scholar 

  • Tabacco A, Meiattini F, Moda E, Tarli E (1979) Simplified enzymatic/colorimetric serum urea nitrogen determination. Clin Chem 25:336–337

    CAS  Google Scholar 

  • Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminum and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789–802

    Article  CAS  Google Scholar 

  • Walton JR (2012) Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer’s disease. J Alzheimers Dis 29:255–273

    CAS  Google Scholar 

  • Yang SJ, Huh JW, Lee JE, Choi SY, Kim TU, Cho SW (2003) Inactivation of human glutamate dehydrogenase by aluminium. Cell Mol Life Sci 60:2538–2546

    Article  CAS  Google Scholar 

  • Yellamma K, Saraswathamma S, Nirmala Kumari B (2010) Cholinergic system under aluminium toxicity in rat brain. Toxicol Int 17(2):106–112. doi:10.4103/0971-6580.72682

    Article  CAS  Google Scholar 

  • Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253

    Article  Google Scholar 

  • Yokel RA, Hicks CL, Florence RL (2008) Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying a 2261–2266.

  • Yousef MI, Salama AF (2009) Propolis protection from reproductive toxicity caused by aluminum chloride in male rats. Food Chem Toxicol 47:1168–1175

    Article  CAS  Google Scholar 

  • Zaman K, Zaman W, Siddique H (1993) Haematological and enzymatic results of aluminium intoxication in rats. Comp Biochem 105c:73–76

    CAS  Google Scholar 

  • Zatta P, Lain E, Cagnolini C (2000) Effect of aluminum on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Eur J Biochem 267:3049–3055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully thanks Dr. Ayman E. Taha, Assistant Professor of Poultry Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt, for performing the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa Fahmy Khafaga.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khafaga, A.F. Exogenous phosphatidylcholine supplementation retrieve aluminum-induced toxicity in male albino rats. Environ Sci Pollut Res 24, 15589–15598 (2017). https://doi.org/10.1007/s11356-017-9151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9151-x

Keywords

Navigation