Skip to main content
Log in

Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this research, magnetite and ethylenediamine-N,N′-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H2O2 concentration, and pH value were evaluated. The effect of different radical species including HO· and HO2 ·/O2 ·− was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H2O2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O2 ·− to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO· radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290

    Article  CAS  Google Scholar 

  • Avetta P, Pensato A, Minella M, Malandrino M, Maurino V, Minero C, Hanna K, Vione D (2014) Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions. Environ. Sci. Technol 49:1043–1050

    Article  Google Scholar 

  • Bielski BH, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  • Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N (1995) Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect 103:608–612

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  • Chun J, Lee H, Lee S-H, Hong S-W, Lee J, Lee C, Lee J (2012) Magnetite/mesocellular carbon foam as a magnetically recoverable Fenton catalyst for removal of phenol and arsenic. Chemosphere 89:1230–1237

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, New York

    Book  Google Scholar 

  • Guimaraes IR, Giroto A, Oliveira LC, Guerreiro MC, Lima DQ, Fabris JD (2009) Synthesis and thermal treatment of Cu-doped goethite: oxidation of quinoline through heterogeneous Fenton process. Appl. Catal., B 91:581–586

    Article  CAS  Google Scholar 

  • Hanna K (2014) Comment on “mechanochemically enhanced degradation of pyrene and phenanthrene loaded on magnetite”. Environ. Sci. Technol 48:8928–8929

    Article  CAS  Google Scholar 

  • Harris L, Goff J, Carmichael A, Riffle J, Harburn J, St. Pierre T, Saunders M (2003) Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 15:1367–1377

    Article  CAS  Google Scholar 

  • Huang W 2012 Homogeneous and heterogeneous Fenton and photo-Fenton processes: impact of iron complexing agent ethylenediamine-N,N'-disuccinic acid (EDDS), UNIVERSITE BLAISE PASCAL

  • Huang W, Brigante M, Wu F, Hanna K, Mailhot G (2012) Development of a new homogenous photo-Fenton process using Fe (III)-EDDS complexes. J Photochem Photobiol A Chem 239:17–23

    Article  CAS  Google Scholar 

  • Huang W, Brigante M, Wu F, Hanna K, Mailhot G (2013a) Effect of ethylenediamine-N, N′-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation. Environ Sci Pollut R 20:39–50

    Article  CAS  Google Scholar 

  • Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013b) Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol a. Environ. Sci. Technol 47:1952–1959

    Article  CAS  Google Scholar 

  • Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K (2004) Degradation of bisphenol A in water by the photo-Fenton reaction. J Photochem Photobiol A Chem 162:297–305

    Article  CAS  Google Scholar 

  • Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol 37:1150–1158

    Article  CAS  Google Scholar 

  • Lan Q, F-b L, C-x S, C-s L, X-z L (2010) Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination. J Hazard Mater 174:64–70

    Article  CAS  Google Scholar 

  • Li J, Mailhot G, Wu F, Deng N (2010) Photochemical efficiency of Fe (III)-EDDS complex: OH radical production and 17β-estradiol degradation. J Photochem Photobiol A Chem 212:1–7

    Article  CAS  Google Scholar 

  • Li J, Mailhot G, Wu F, Deng N (2012) Photodegradation of E2 in the presence of natural montmorillonite and the iron complexing agent ethylenediamine-N, N' -disuccinic acid. Photoch Photobio Sci 11:1880–1885

    Article  CAS  Google Scholar 

  • Liang X, Zhong Y, Zhu S, Ma L, Yuan P, Zhu J, He H, Jiang Z (2012) The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. J Hazard Mater 199:247–254

    Article  Google Scholar 

  • Lin S-S, Gurol MD (1998) Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol 32:1417–1423

    Article  CAS  Google Scholar 

  • Miller CM, Valentine RL (1999) Mechanistic studies of surface catalyzed H 2 O 2 decomposition and contaminant degradation in the presence of sand. Water Res 33:2805–2816

    Article  CAS  Google Scholar 

  • Minella M, Marchetti G, De Laurentiis E, Malandrino M, Maurino V, Minero C, Vione D, Hanna K (2014) Photo-Fenton oxidation of phenol with magnetite as iron source. Appl. Catal., B 154:102–109

    Article  Google Scholar 

  • Moura FCC, Araujo MH, Costa RCC, Fabris JD, Ardisson JD, Macedo WAA, Lago RM (2005) Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60:1118–1123

    Article  CAS  Google Scholar 

  • Ntsendwana B, Mamba B, Sampath S, Arotiba O (2012) Electrochemical detection of bisphenol A using graphene-modified glassy carbon electrode. Int J Electrochem Sci 7:3501–3512

    CAS  Google Scholar 

  • Pierre J, Fontecave M (1999) Iron and activated oxygen species in biology: the basic chemistry. Biometals 12:195–199

    Article  CAS  Google Scholar 

  • Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35

    Article  CAS  Google Scholar 

  • Rosenfeldt EJ, Linden KG (2004) Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol 38:5476–5483

    Article  CAS  Google Scholar 

  • Rusevova K, Kopinke F-D, Georgi A (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—influence of Fe (II)/Fe (III) ratio on catalytic performance. J Hazard Mater 241:433–440

    Article  Google Scholar 

  • Sabri N, Hanna K, Yargeau V (2012) Chemical oxidation of ibuprofen in the presence of iron species at near neutral pH. Sci. Total Environ 427–428:382–389

    Article  Google Scholar 

  • Schwertmann U, Cornell RM (2008) Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons, New York

    Google Scholar 

  • Silva AC, Cepera RM, Pereira MC, Lima DQ, Fabris JD, Oliveira LC (2011) Heterogeneous catalyst based on peroxo-niobium complexes immobilized over iron oxide for organic oxidation in water. Appl. Catal., B 107:237–244

    Article  CAS  Google Scholar 

  • Suárez S, Sueiro RA, Jn G (2000) Genotoxicity of the coating lacquer on food cans, bisphenol a diglycidyl ether (BADGE), its hydrolysis products and a chlorohydrin of BADGE. Mutat Res 470:221–228

    Article  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1, 10-phenanthroline in the presence of large amounts of iron (III). Talanta 21:314–318

    Article  CAS  Google Scholar 

  • Torres RA, Pétrier C, Combet E, Moulet F, Pulgarin C (2007) Bisphenol A mineralization by integrated ultrasound-UV-iron (II) treatment. Environ. Sci. Technol 41:297–302

    Article  CAS  Google Scholar 

  • Usman M, Martin S, Cimetiere N, Giraudet S, Chatain V, Hanna K (2014) Sorption of nalidixic acid onto micrometric and nanometric magnetites: experimental study and modeling. Appl Surf Sci 299:136–145

    Article  CAS  Google Scholar 

  • Wang Y, Liang JB, Liao XD, Wang L-s, Loh TC, Dai J, Ho YW (2010) Photodegradation of sulfadiazine by goethite−oxalate suspension under UV light irradiation. Ind Eng Chem Res 49:3527–3532

    Article  CAS  Google Scholar 

  • Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H (2003) Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 52:851–859

    Article  CAS  Google Scholar 

  • Xu J, Li J, Wu F, Zhang Y (2014) Rapid Photooxidation of As(III) through surface complexation with nascent colloidal ferric hydroxide. Environ Sci Technol 48:272–278

    Article  CAS  Google Scholar 

  • Xue X, Hanna K, Abdelmoula M, Deng N (2009a) Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations. Appl Catal, B 89:432–440

    Article  CAS  Google Scholar 

  • Xue X, Hanna K, Deng N (2009b) Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J Hazard Mater 166:407–414

    Article  CAS  Google Scholar 

  • Xue X, Hanna K, Despas C, Wu F, Deng N (2009c) Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. J Mol Catal A Chem 311:29–35

    Article  CAS  Google Scholar 

  • Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42:415–418

    Article  CAS  Google Scholar 

  • Yuan B, Li X, Li K, Chen W (2011) Degradation of dimethyl phthalate (DMP) in aqueous solution by UV/Si–FeOOH/H2O2. Colloids Surf A Physicochem Eng Asp 379:157–162

    Article  CAS  Google Scholar 

  • Zeng X, Hanna K, Lemley AT (2011) Cathodic Fenton degradation of 4,6-dinitro-o-cresol with nano-magnetite. J Mol Catal A Chem 339:1–7

    Article  CAS  Google Scholar 

  • Zhong Y, Liang X, Tan W, Zhong Y, He H, Zhu J, Yuan P, Jiang Z (2013) A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J Mol Catal A Chem 372:29–34

    Article  CAS  Google Scholar 

  • Zhou D, Wu F, Deng N, Xiang W (2004) Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts. Water Res 38:4107–4116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 21367003), Guangxi Natural Science Foundation (No. 2014GXNSFBA118217), and Scientific research project of the Guangxi Education Department (No. YB2014012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyu Huang or Gilles Mailhot.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Luo, M., Wei, C. et al. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation. Environ Sci Pollut Res 24, 10421–10429 (2017). https://doi.org/10.1007/s11356-017-8728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8728-8

Keywords

Navigation