Skip to main content
Log in

Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm

  • Aquatic organisms and biological responses to assess water contamination and ecotoxicity
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work addressed the trophic transfer and effects of functionalized gold nanoparticles (AuNPs) from periphytic biofilms to the crustacean Gammarus fossarum. Biofilms were exposed for 48 h to 10 nm positively charged functionalized AuNPs at two concentrations, 4.6 and 46 mg/L, and crustaceans G. fossarum grazed on these for 7 days, with daily biofilm renewal. Gold bioaccumulation in biofilm and crustacean were measured to estimate the trophic transfer ratio of these AuNP, and, for the first time, a transcriptomic approach and transmission electron microscopy observations in the crustacean were made. These two approaches showed cellular damage caused by oxidative stress and, in particular, an impact of these AuNPs on mitochondrial respiration. Modulation of digestive enzyme activity was also observed, suggesting modifications of digestive functions. The damage due to these nanoparticles could then have vital consequences for the organisms during chronic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu PC, Ballester ELC, Odebrecht C, Wasielesky W Jr, Cavalli R, Granéli W (2007) Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (δ13C and δ15N). J Exp Mar Biol Ecol 347:88–96

    Article  CAS  Google Scholar 

  • Achard M, Baudrimont M, Boudou A, Bourdineaud JP (2004) Induction of a multixenobiotic resistance protein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure. Aquat Toxicol 67:347–357

    Article  CAS  Google Scholar 

  • Adam O (2008) Impact des produits de traitement du bois sur les amphipodes Gamamrus pulex (L.) et Gammarus fossarum (K.) : approches chimiques, hydro-écologique et écotoxicologique. PhD thesis, University of Franche-comté, France

  • Amiard J, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Andrei J, Pain-Devin S, Felten V, Devin S, Giambérini L, Mehennaoui K, Cambier S, Gutleb AC, Guérold F (2016) Silver nanoparticles impact the functional role of Gammarus roeseli (Curstacea Amphipoda). Environ Pollut 208:608–618

    Article  CAS  Google Scholar 

  • Arini A, Feurtet-Mazel A, Morin S, Maury-Brachet R, Coste M, Delmas F (2012a) Remediation of a watershed contaminated by heavy metals: a 2-year field biomonitoring of periphytic biofilms. STOTEN 425:242–253

    CAS  Google Scholar 

  • Arini A, Feurtet-Mazel A, Maury-Brachet R, Pokrovsky O, Coste M, Delmas F (2012b) Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology 21:1403–1414

    Article  CAS  Google Scholar 

  • Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, Brisson A (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thrombose Haemost 12:614–627

    Article  CAS  Google Scholar 

  • Aueviriyavit S, Phummiratch D, Maniratanachote R (2014) Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells – induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles. Toxico Lett 224:73–83

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic NPs: a parameter controlling their potential cellular toxicity in vitro. Environ Poll 157:1127–1133

    Article  CAS  Google Scholar 

  • Bajak E, Fabbri M, Ponti J, Gioria S, Ojea-Jimenez I, Collotta A, Mariani V, Gilliland D, Rossi F, Gribaldo L (2014) Changes in Caco-2 cells transcriptome profiles upon exposure to gold nanoparticles. Toxicol Lett doi. doi:10.1016/j.toxlet.2014.12.008

    Google Scholar 

  • Baudrimont M, Andrès S, Durrieu G, Boudou A (2003) The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after an in situ exposure to Cd and Zn. Aquat Toxicol 63:89–102

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chatterjee A, Priyam A, Bhattacharya SC, Saha A (2007) pH dependent interaction of biofunctionalized CdS NPs with nucleobases and nucleotides: a fluorimetric study. J lumen 126:764–770

    CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  • Connor E, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold NPs are taken up by human cells but do not acute cytotoxicity. Small 1:325–327

    Article  CAS  Google Scholar 

  • Correia AD, Livingstone DR, Helena Costa M (2002) Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod Gammarus locusta. Mar Environ Res 54:357–360

    Article  CAS  Google Scholar 

  • Dauta A (1982) Conditions de développement du phytoplancton. Etude comparative du comportement de huit espèces en culture. Ann Limnol:217–262

  • Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud JP (2014) Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology. doi:10.3109/17435390.2014.889238

    Google Scholar 

  • Dedourge-Geffard O, Palais F, Biagianti-Risbourg S, Geffard O, Geffard A (2009) Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere 77:1569–1576

    Article  CAS  Google Scholar 

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90:19–28

    Article  CAS  Google Scholar 

  • Duong TT, Morin S, Coste M, Herlory O, Feurtet-Mazel A, Boudou A (2010) Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. STOTEN 408:552–562

    CAS  Google Scholar 

  • Ernest V, Shiny PJ, Mukherjee A, Chandrasekaran N (2012) Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by alpha-amylase. Carbohydrate Res 352:60–64

    Article  CAS  Google Scholar 

  • Farkas J, Christian P, Gallego Urrea JA, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2009) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96:44–52

    Article  Google Scholar 

  • Fouqueray M, Dufils B, Vollat B, Chaurand P, Botta C, Abacci K, Labille J, Rose J, Garric J (2012) Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environ Poll 163:55–61

    Article  CAS  Google Scholar 

  • Garcia-carreño FL, Haard N (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J Food Biochem 17:97–113

    Article  Google Scholar 

  • Hochepied JF and Guyot-Ferréol V (2007) Cosmétique et nanomatériaux. www.ep.ensmp.fr/scpi/PubliSCPI/nanocosmetique.pdf

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  CAS  Google Scholar 

  • Kelly DW, Dick JTA, Montgomery WI (2002) The functional role of Gammarus (Crustacea, Amphipoda): shredders, predators, or both? Hydrobiologia 485:199–203

    Article  Google Scholar 

  • Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390

    Article  CAS  Google Scholar 

  • Koehler A, Marx U, Broeg K, Bahns S, Bressling J (2010) Effects of nanoparticles in Mytilus edulis gills and hepatopancreas a new threat to marine life? Mar Environ Res 66:12–14

    Article  Google Scholar 

  • Lacaze E (2011) Un biomarqueur de génotoxicité chez Gammarus fossarum : développement, signification fonctionnelle et application au milieu naturel. Ph.D. Thesis, University of Metz

  • Lebrun JD, Perret M, Geffard A, Gourlay-Francé C (2012) Modelling copper bioaccumulation in Gammarus pulex and alterations of digestive metabolism. Ecotoxicology 21:2022–2030

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  Google Scholar 

  • Livak J, Schmittgen TT (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method., in. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mehennaoui K, Georgantzopoulou A, Felten V, Andrei J, Garaud M, Cambier S, Serchi T, Pain-Devin S, Guérold F, Audinot J-N, Giambérini L, Gutleb A (2016) Gammarus fossarum (crustacean, Amphipoda) as a model organism to study the effects of silver nanoparticles. STOTEN 566-567:1649–1659

    CAS  Google Scholar 

  • Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2008) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 54:173–186

    Article  CAS  Google Scholar 

  • Muralisankar T, Bhavan PS, Radhakrishnan S, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol Trace Elem Res 160:56–66

    Article  CAS  Google Scholar 

  • Palais F, Jubeaux G, Dedourge-Geffard O, Biagianti-Risbourg S, Geffard A (2010) Amylolytic and cellulolytic activities in the crystalline style and the digestive diverticulae of the freshwater bivalve Dreissena polymorpha (Pallas,1771). Molluscan Res 30:29–36

    Google Scholar 

  • Paul-Pont I, de Montaudouin X, Gonzalez P, Jude F, Raymond N, Paillard C, Baudrimont M (2010) Interactive effects of metal contamination and pathogenic organisms on the introduced marine bivalve Ruditapes philippinarum in European populations. Environ Poll 158:3401–3410

    Article  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  Google Scholar 

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    Article  CAS  Google Scholar 

  • Rothen-Rutishauser BM, Schürch S, Haenni B, Kappa N, Gehr P (2006) Interaction of fine particles and NPs with red blood cells visualized with advanced microscopic technique. ES&T 40:4353–4359

    Article  CAS  Google Scholar 

  • Russell R and Cresanti R (2006) Environmental, Health, and Safety research needs for engineering nanoscale materials. Nanoscale science, engineering, and technology subcommittee

  • Schmitz G, Minkel DT, Gingrich D, Shaw CF III (1980) The binding of gold (I) to metallothionein. J Inorg Biochem 293–230

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568

    Article  CAS  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold NPs and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  CAS  Google Scholar 

  • Yu S, Rui Q, Cai T, Wu Q, Li Y, Wang D (2011) Close association of intestinal autofluorescence with the formation of severe oxidative damage in, intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ Toxicol Pharmacol 32:233–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES) research program TRONANO, for their support of this work. They also thank Bruno Etcheverria from the EPOC laboratory (University of Bordeaux) for his support in laboratory work, and the Bordeaux Imaging Center which allowed us access to their microscopic devices. This work was also supported by the Agence Nationale de la Recherche (ANR) in the CITTOXIC-Nano program (ANR-14-CE21-0001-01) and the Investments for the future Program, within the Cluster of Excellence COTE (ANR-10-LABX-45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magalie Baudrimont.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudrimont, M., Andrei, J., Mornet, S. et al. Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm. Environ Sci Pollut Res 25, 11181–11191 (2018). https://doi.org/10.1007/s11356-017-8400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8400-3

Keywords

Navigation