Skip to main content
Log in

Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adewuyi YG, Khan NE (2012) Modeling the ultrasonic cavitation-enhanced removal of nitrogen oxide in a bubble column reactor. React Kinet Catal 58:2397–2411

    CAS  Google Scholar 

  • Ali MG, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Annu Rev Nano Res 2:439–493

    Article  Google Scholar 

  • Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res 55:185–193. https://doi.org/10.1016/j.watres.2014.02.025

    Article  CAS  Google Scholar 

  • Araujo FVF, Yokoyama L, Teixeira LAC, Campos JC (2011) Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution. Braz J Chem Eng 28:605–616

    Article  CAS  Google Scholar 

  • Asghar A, Raman AAA, Daud WMAW (2015) Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J Clean Prod 87:826–838. https://doi.org/10.1016/j.jclepro.2014.09.010

    Article  CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  • Badmus KO, Tijani JO, Eze CP, Fatoba OO, Petrik LF (2016) Chemistry quantification of radicals generated in a sonicator

  • Bagal MV, Gogate PR (2014a) Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrason Sonochem 21(3):1035–1043. https://doi.org/10.1016/j.ultsonch.2013.10.020

    Article  CAS  Google Scholar 

  • Bagal MV, Gogate PR (2014b) Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrason Sonochem 21(1):1–14. https://doi.org/10.1016/j.ultsonch.2013.07.009

    Article  CAS  Google Scholar 

  • Barkhudarov EM, Kossyi IA, Kozlov YN, Temchin SM, Taktakishvili MI, Christofi N (2013) Multispark discharge in water as a method of environmental sustainability problems solution. J At Mol Phys 2013:6–7

    Google Scholar 

  • Benitez FJ, Acero JL, Real FJ, Rubio FJ, Leal AI (2001) The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Res 35(5):1338–1343. https://doi.org/10.1016/S0043-1354(00)00364-X

    Article  CAS  Google Scholar 

  • Benito Y, Arrojo S, Hauke G, Vidal P (2005) Hydrodynamic cavitation as a low-cost AOP for wastewater treatment: preliminary results and a new design approach. WIT Trans Ecol Environ 80:495–503

    CAS  Google Scholar 

  • Bethi B, Sonawane SH, Rohit GS, Holkar CR, Pinjari DV, Bhanvase BA, Pandit AB (2016) Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP. Ultrason Sonochem 28:150–160. https://doi.org/10.1016/j.ultsonch.2015.07.008

    Article  CAS  Google Scholar 

  • Braeutigam P, Franke M, Schneider RJ, Lehmann A, Stolle A, & Ondruschka B (2012) Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC). Water Res 46(7):2469-2477

  • Bremner HD, Burgess EA, & Chand R (2011) The chemistry of ultrasonic degradation of organic compounds. Curr Org Chem 15(2):168-177

  • Cai M, Su J, Zhu Y, Wei X, Jin M, Zhang H, Dong C, Wei Z (2015) Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process. Ultrason Sonochem 28:302–310

    Article  Google Scholar 

  • Cao D, Niu KY, Yu F (2011) Economic analysis on pollution control for textile industry. Adv Mater Res 332–334:1087–1092

    Article  Google Scholar 

  • Capocelli M, Prisciandaro M, Lancia A, Musmarra D (2014) Application of ANN to hydrodynamic cavitation: preliminary results on process efficiency evaluation. Chem Eng Trans 36:199–204

    Google Scholar 

  • Capocellia M, Prisciandarob M, Lanciac A (2014) Comparison between hydrodynamic and acoustic cavitation in microbial cell disruption. Chem 38:13–18

    Google Scholar 

  • Carocci A, Rovito N, Sinicropi MS, & Genchi G (2014) Mercury toxicity and neurodegenerative effects. In Reviews of environmental contamination and toxicology. Springer International Publishing, pp 1-18

  • Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2009) Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem Eng J 152(2-3):498–502. https://doi.org/10.1016/j.cej.2009.05.018

    Article  CAS  Google Scholar 

  • Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2008) Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process. Ultrasonics sonochemistry 15(1):49–54

    Article  CAS  Google Scholar 

  • Charlier C, Desaive CL, Plomteux G (2002) Human exposure to endocrine disrupters: consequences of gastroplasty on plasma concentration of toxic pollutants. Int J Obes Relat Metab Disord 26(11):1465–1468. https://doi.org/10.1038/sj.ijo.0802144

    Article  CAS  Google Scholar 

  • Chhillar N, Singh NK, Banerjee BD, Bala K, Sharma D, Chhillar M (2013) Organochlorine pesticide levels and risk of Parkinson’ s disease in north Indian population. Neurology 2013:6

    Google Scholar 

  • Chin A, Bérubé PR (2005) Removal of disinfection by-product precursors with ozone-UV advanced oxidation process. Water Res 39(10):2136–2144. https://doi.org/10.1016/j.watres.2005.03.021

    Article  CAS  Google Scholar 

  • Chiron S, Minero C (2007) Occurrence of 2, 4-dichlorophenol and of 2, 4-dichloro-6-nitrophenol in the Rhone River delta (Southern France). Environ Sci Technol 41(9):3127–3133. https://doi.org/10.1021/es0626638

    Article  CAS  Google Scholar 

  • Chong MN, Sharma AK, Burn S, Saint CP (2012) Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. J Clean Prod 35:230–238. https://doi.org/10.1016/j.jclepro.2012.06.003

    Article  CAS  Google Scholar 

  • Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39(1):97–106. https://doi.org/10.1016/j.watres.2004.08.036

    Article  CAS  Google Scholar 

  • Colt JS, Rothman N, Severson RK, Hartge P, Cerhan JR, Chatterjee N, Cozen W, Morton LM, De Roos AJ, Davis S, Chanock S, Wang SS (2009) Organochlorine exposure, immune gene variation, and risk of non-Hodgkin lymphoma. Blood 113(9):1899–1906. https://doi.org/10.1182/blood-2008-04-153858

    Article  CAS  Google Scholar 

  • Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H (2010) Sick water? The central role of waste- water management in sustainable development. A rapid response assessment., United Nations Environment Programme, UN-HABITAT

  • Côté S, Ayotte P, Dodin S, Blanchet C, Mulvad G, Petersen HS, Gingras S, Dewailly E (2006) Plasma organochlorine concentrations and bone ultrasound measurements: a cross-sectional study in peri- and postmenopausal Inuit women from Greenland. Environ Health 5(1):33. https://doi.org/10.1186/1476-069X-5-33

    Article  Google Scholar 

  • de Vidales MJM, Sáez C, Pérez JF, Cotillas S, Llanos J, Cañizares P, & Rodrigo MA (2015) Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. J Appl Electrochem 45(7):799-808

  • Cui K, Yi H, Zhou Z-J, Zhuo Q-F, Bing Y-X, Guo Q-W, Xu Z-C (2014) Fenton oxidation kinetics and intermediates of nonylphenol ethoxylates. Environ Eng Sci 31(5):217–224. https://doi.org/10.1089/ees.2013.0308

    Article  CAS  Google Scholar 

  • Daǧdelen S, Acemioǧlu B, Baran E, Koçer O (2014) Removal of remazol brilliant blue R from aqueous solution by pirina pretreated with nitric acid and commercial activated carbon. Water Air Soil Pollut 225(3). https://doi.org/10.1007/s11270-014-1899-8

  • DEFRA (2012) Waste water treatment in the United Kingdom, implication of the European Union Urban Waste Water Treatment Directive-91/271/EEC

  • Dianyi, Yu M (2016) Case studies in environmental medicine polychlorinated biphenyls (PCBs) toxicity

  • Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, Xekoukoulotakis NP, Venieri D, Mantzavinos D (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO 2 photocatalysis. J Environ Manag 98:168–174. https://doi.org/10.1016/j.jenvman.2012.01.010

    Article  CAS  Google Scholar 

  • Dular M, Griessler-Bulc T, Gutierrez-Aguirre I, Heath E, Kosjek T, Krivograd Klemenčič A, Oder M, Petkovšek M, Rački N, Ravnikar M, Šarc A, Širok B, Zupanc M, Žitnik M, Kompare B (2016) Use of hydrodynamic cavitation in (waste)water treatment. Ultrason Sonochem 29:577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010

    Article  CAS  Google Scholar 

  • Frenken K, and Gillet V (2012) Irrigation water requirement and water withdrawal by country. FAO, Rome, Italy

  • Giri RR, Ozaki H et al (2010) Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques[J]. Int J Environ Sci Technol 7:251–260

    Article  CAS  Google Scholar 

  • Gogate PR, Patil PN (2015) Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes. Ultrason Sonochem 25:60–69. https://doi.org/10.1016/j.ultsonch.2014.08.016

    Article  CAS  Google Scholar 

  • Gong C, Hart DP (1998) Ultrasound induced cavitation and sonochemical yields. J Acoust Soc Am 104(5):2675–2682. https://doi.org/10.1121/1.423851

    Article  Google Scholar 

  • Gore MM, Saharan VK, Pinjari DV, Chavan PV, Pandit AB (2014) Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques. Ultrason Sonochem 21(3):1075–1082. https://doi.org/10.1016/j.ultsonch.2013.11.015

    Article  CAS  Google Scholar 

  • Grande GA (2015) Treatment of wastewater from textile dyeing by ozonization. POLITECNICO DI TORINO

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts [WWW Document]. http://rspa.royalsocietypublishing.org/

  • Hamamoto S, Kishimoto N (2016) Ce pt ed cr t. Sep Sci Technol 6395

  • Hossain MM, Islam KMN, Rahman IMM (2012) An overview of the persistent organic pollutants in the freshwater system. In: Ecological water quality-water treatment and reuse edited. pp 496

  • Hou X, Huang X, Ai Z, Zhao J, Zhang L (2016) Ascorbic acid/Fe@Fe2O3: a highly efficient combined Fenton reagent to remove organic contaminants. J Hazard Mater 310:170–178. https://doi.org/10.1016/j.jhazmat.2016.01.020

    Article  CAS  Google Scholar 

  • Jelonek P, and Neczaj E (2012) The use of Advanced Oxidation Processes (AOP) for the treatment of landfill leachate. Inżynieria i Ochrona Środowiska 15:203-217

  • Jewell KP, Wilson JT (2011) Water level monitoring pressure transducers: a need for industry-wide standards. Ground Water Monit Remediat 31(3):82–94. https://doi.org/10.1111/j.1745-6592.2011.01345.x

    Article  CAS  Google Scholar 

  • Khanchandani S, Kumar S, Ganguli AK (2016) Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis. ACS Sustainable Chemistry & Engineering 4(3):1487–1499

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43(2):363–380. https://doi.org/10.1016/j.watres.2008.10.047

    Article  CAS  Google Scholar 

  • Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44(16):6343–6349. https://doi.org/10.1021/es1000227

    Article  CAS  Google Scholar 

  • Kaur S, Singh V (2007) Visible light induced sonophotocatalytic degradation of reactive red dye 198 using dye sensitized TiO2. Ultrason Sonochem 14(5):531–537. https://doi.org/10.1016/j.ultsonch.2006.09.015

    Article  CAS  Google Scholar 

  • Kavitha SK, Palanisamy PN (2011) Photocatalytic and sonophotocatalytic degradation of Reactive Red 120 using dye sensitized TiO2 under visible light. Eng Technol 5:1–6

    Google Scholar 

  • Khan MAN, Siddique M, Wahid F, Khan R (2015a) Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason Sonochem 26:370–377. https://doi.org/10.1016/j.ultsonch.2015.04.012

    Article  CAS  Google Scholar 

  • Khan MM, Adil SF, Al-Mayouf A (2015b) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464

    Article  Google Scholar 

  • Kiparissis Y, Balch GC, Metcalfe TL, Metcalfe CD (2003) Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka (Oryzias Latipes). Environ Health Perspect 111(9):1158–1163. https://doi.org/10.1289/ehp.5928

    Article  CAS  Google Scholar 

  • Korniluk M, & Ozonek J (2013) Investigation on landfill leachate biodegradability improvement by use of hydrodynamic cavitation and ozone. Rocznik Ochrona Środowiska 15(cz. 1):124-135

  • Koutahzadeh N, Esfahani MR, Arce PE (2016) Removal of acid black 1 from water by the pulsed corona discharge advanced oxidation method. J Water Process Eng 10:1–8

    Article  Google Scholar 

  • Krapcheva S (2006) National Implementation Plan for the Management of Persistent Organic Pollutants (POPs) in the Republic of Bulgaria National Ministry of Environment and Water of the Republic of Bulgaria. MEOW, Sofia

  • Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37(6):1150–1158. https://doi.org/10.1021/es020874g

    Article  CAS  Google Scholar 

  • Lester Y, Avisar D, Gozlan I, Mamane H (2011) Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation process. Water Sci Technol 2:1–10

    Google Scholar 

  • Li R, Jin X, Megharaj M, Naidu R, Chen Z (2015) Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem Eng J 264:587–594. https://doi.org/10.1016/j.cej.2014.11.128

    Article  CAS  Google Scholar 

  • Liang J, Komarov S, Hayashi N, Kasai E (2007) Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents. Ultrason Sonochem 14(2):201–207. https://doi.org/10.1016/j.ultsonch.2006.05.002

    Article  CAS  Google Scholar 

  • Liu J, Lewis G (2014) Environmental toxicity and poor cognitive outcomes in children and adults. J Environ Health 76(6):130–138

    Google Scholar 

  • Lopez-Telleza G, Barrera-Diaza CE, Balderas-Hernandeza P, Bilyeub (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173(2):480–485. https://doi.org/10.1016/j.cej.2011.08.018

    Article  Google Scholar 

  • Louisnard O, & González-García J (2011) Acoustic cavitation. In Ultrasound technologies for food and bioprocessing. Springer, New York, pp 13-64

  • Ma Y (2012) Short review: current trends and future challenges in the application of sono-Fenton oxidation for wastewater treatment. Sustain Environ Res 22:271–278

    CAS  Google Scholar 

  • Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17(6):990–1003. https://doi.org/10.1016/j.ultsonch.2009.09.005

    Article  CAS  Google Scholar 

  • Mahdad F, Younesi H, Bahramifar N, Hadavifar M (2015) Optimization of Fenton and photo-Fenton-based advanced oxidation processes for post-treatment of composting leachate of municipal solid waste by an activated sludge process. KSCE J Civ Eng 0:1–12

    Google Scholar 

  • Malik MA, Hughes D, Heller R, Schoenbach KH (2015) Surface plasmas versus volume plasma: energy deposition and ozone generation in air and oxygen. Plasma Chem Plasma Process 35(4):697–704. https://doi.org/10.1007/s11090-015-9611-3

    Article  CAS  Google Scholar 

  • Mehrvar M, Anderson WA, Moo-young M (2001) Photocatalytic degradation of aqueous organic solvents in the presence of hydroxyl radical scavengers. Int J Photoenergy 3(4):187–191. https://doi.org/10.1155/S1110662X01000241

    Article  CAS  Google Scholar 

  • Miniero R, L’lamiceli A (2008) Persistent Organic Pollutants, Encyclopedia of Ecology

  • Ministry of Environment and Water (2006) Basic characteristics of persistent organic polutants (POPS)

  • Mishra KP, Gogate PR (2010) Intensification of degradation of rhodamine B using hydrodynamic cavitation in the presence of additives. Sep Purif Technol 75(3):385–391. https://doi.org/10.1016/j.seppur.2010.09.008

    Article  CAS  Google Scholar 

  • Multigner L, Kadhel P, Rouget F, Blanchet P, Cordier S (2016) Chlordecone exposure and adverse effects in French West Indies populations. Environ Sci Pollut Res 23(1):3–8. https://doi.org/10.1007/s11356-015-4621-5

    Article  CAS  Google Scholar 

  • Muruganandham M, Suri RPS, Jafari S, Sillanpää M, Lee G, Wu JJ, Swaminathan M (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. 2014:21. https://doi.org/10.1155/2014/821674

  • Natalija K, Iva SH, Hrvoje K (2006) Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere 65:65–73

    Article  Google Scholar 

  • OECD (2011) OECD environmental outlook to 2050: the consequences of inaction, OECD environmental outlook to 2050. https://doi.org/10.1787/eco_outlook-v2011-sup1-en

  • Ozonek J (2012) Application of hydrodynamic cavitation in environmental engineering. Taylor & Francis Group, LLC., 6000 broken Sound Parkway NW, suite 300 Boca Raton, FL 33487-2742

  • Ozonek J, Lenik K (2011) Effect of different design features of the reactor on hydrodynamic cavitation process. Arch. Mater Sci Eng 52:112–117

    Google Scholar 

  • Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4(1):51. https://doi.org/10.1186/s13568-014-0051-x

    Article  Google Scholar 

  • Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljević V, O’Donnell CP, Bourke P, Keener KM, Cullen PJ (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35(1):5–17. https://doi.org/10.1016/j.tifs.2013.10.009

    Article  CAS  Google Scholar 

  • Panorel IC (2013) Pulsed corona discharge as an advanced oxidation process for degradation of organic. Acta Universitatis Lappeenrantaensis

  • Patil PN, Bote SD, Gogate PR (2014) Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation. Ultrason Sonochem 21(5):1770–1777. https://doi.org/10.1016/j.ultsonch.2014.02.024

    Article  CAS  Google Scholar 

  • Pescod MB (2004) Wastewater treatment and use in agriculture—FAO irrigation and drainage paper 47. Food and Agriculture Organization of United Nations

  • Pokethitiyook P, Poolpak T (2012) Chapter 11: heptachlor and its metabolite: accumulation and degradation in sediment. In Pesticides-Recent Trends in Pesticide Residue Assay. InTech. 217–252. https://doi.org/10.5772/48741

  • Pradhan AA, Gogate PR (2010) Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation. Chem Eng J 156(1):77–82. https://doi.org/10.1016/j.cej.2009.09.042

    Article  CAS  Google Scholar 

  • Pradhan AA, Gogate PR (2010) Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. Journal of hazardous materials 173(1):517–522. https://doi.org/10.1016/j.jhazmat.2009.08.115

  • Raut-jadhav S, Saini D, Sonawane S, Pandit A (2016) Ultrasonics sonochemistry effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution. Ultrason Sonochem 28:283–293. https://doi.org/10.1016/j.ultsonch.2015.08.004

    Article  CAS  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170(2-3):560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064

    Article  CAS  Google Scholar 

  • Reis RM, Beati AAGF, Rocha RS, Assumpção MHMT, Santos MC, Bertazzoli R, Lanza MRV (2012) Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor. Ind Eng Chem Res 51(2):649–654. https://doi.org/10.1021/ie201317u

    Article  Google Scholar 

  • Santos HM, Lodeiro C, Capelo-Martínez JL (2008) Power ultrasound meets protemics. Ultrasound in chemistry: analytical applications:107–127. https://doi.org/10.1002/9783527623501.ch5

  • Santos HM, Capelo JL (2007) Trends in ultrasonic-based equipment for analytical sample treatment. Talanta 73(5):795–802. https://doi.org/10.1016/j.talanta.2007.05.039

    Article  CAS  Google Scholar 

  • Santos HM, Lodeiro C (2009) The power of ultrasound:1–16

  • Santos DC, Silva L, Albuquerque A, Simões R, Gomes AC (2013) Biodegradability enhancement and detoxification of cork processing wastewater molecular size fractions by ozone. Bioresour Technol 147:143–151. https://doi.org/10.1016/j.biortech.2013.07.154

    Article  CAS  Google Scholar 

  • Šarc A, Stepišnik-Perdih T, Petkovšek M, Dular M (2017) The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrason Sonochem 34:51–59. https://doi.org/10.1016/j.ultsonch.2016.05.020

    Article  Google Scholar 

  • Shah AD, Dai N, Mitch WA (2013) Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture. Environ Sci Technol 47(6):2799–2808. https://doi.org/10.1021/es304893m

    Article  CAS  Google Scholar 

  • Sharma S, Ruparelia JP, & Patel ML (2011) A general review on Advanced Oxidation Processes for waste water treatment. In Nirma University International Conference, Ahmedabad, Gujarat

  • Sillanpää M, Pham TD, & Shrestha RA (2011) Ultrasound technology in green chemistry. In Ultrasound Technology in Green Chemistry. Springer, Netherlands, pp 1-21

  • Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton C, Pavuk M (2012) Polychlorinated biphenyl (PCB) exposure and diabetes: results from the Anniston community health survey. Environ Health Perspect 120(5):727–732. https://doi.org/10.1289/ehp.1104247

    Article  CAS  Google Scholar 

  • Sirk KM, Saleh NB, Phenrat T, Kim H, Dufour B, Ok J, Golas PL, Matyjaszewski K, Llwry GV, Tilton RD (2009) Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ Sci Technol 43(10):3803–3808. https://doi.org/10.1021/es803589t

    Article  CAS  Google Scholar 

  • Snyder S, Westerhoff P, Yoon Y, Sedlak D (2003) Disruptors in water: implications for the water industry. Environ Eng Sci 20(5):449–469. https://doi.org/10.1089/109287503768335931

    Article  CAS  Google Scholar 

  • Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7(2):125–138. https://doi.org/10.1007/s11157-008-9130-2

    Article  Google Scholar 

  • Sychev A, Isak V (1995) Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates. Russ Chem Rev 65:1105–1129

    Article  Google Scholar 

  • Tartu S, Bourgeon S, Aars J, Andersen M, Polder A, Thiemann GW, Welker JM, Routti H (2017) Science of the total environment sea ice-associated decline in body condition leads to increased concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from Svalbard, Norway. Sci Total Environ 576:409–419. https://doi.org/10.1016/j.scitotenv.2016.10.132

    Article  CAS  Google Scholar 

  • Thuy TT (2015) Effects of ddt on environment and human health. J Educ Soc Sci 2:108–114

    Google Scholar 

  • Tinne N, Kaune B, Kruger A, Ripken T (2014) Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses. PLoS One 9:1–26

    Article  Google Scholar 

  • Toft G, Hagmar L, Giwercman A, Bonde JP (2004) Epidemiological evidence on reproductive effects of persistent organochlorines in humans. Reprod Toxicol 19(1):5–26. https://doi.org/10.1016/j.reprotox.2004.05.006

    Article  CAS  Google Scholar 

  • Trzcinski AP, Stuckey DC (2016) Inorganic fouling of an anaerobic membrane bioreactor treating leachate from the organic fraction of municipal solid waste (OFMSW) and a polishing aerobic membrane bioreactor. Bioresour Technol 204:17–25. https://doi.org/10.1016/j.biortech.2015.12.074

    Article  CAS  Google Scholar 

  • U.S. EPA (1999) Wastewater technology fact sheet ozone disinfection, Office of Water Washington, D.C

  • Üner O, Geçgel Ü, Bayrak Y (2016) Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut 227(7):247. https://doi.org/10.1007/s11270-016-2949-1

    Article  Google Scholar 

  • UNESCO (2012) Managing water under uncertainty and risk

  • Water UN (2012) Managing water under uncertainty and risk, The United Nations world water development report 4. UN Water Reports, World Water Assessment Programme

    Google Scholar 

  • Wang Z (2013) Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain Chem Eng 1(12):1551-1554

  • Wang C, Klamerth N, Messele SA, Singh A, Belosevic M, Gamal El-Din M (2016) Comparison of UV/hydrogen peroxide, potassium ferrate(VI), and ozone in oxidizing the organic fraction of oil sands process-affected water (OSPW). Water Res 100:476–485. https://doi.org/10.1016/j.watres.2016.05.037

    Article  CAS  Google Scholar 

  • Webb IR, Payne SJ, Coussios C (2011) The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation. Acoust Soc Am 130(5):3458–3466. https://doi.org/10.1121/1.3626136

    Article  CAS  Google Scholar 

  • Wong KT, Yoon Y, Snyder SA, Jang M (2016) Phenyl-functionalized magnetic palm-based powdered activated carbon for the effective removal of selected pharmaceutical and endocrine-disruptive compounds. Chemosphere 152:71–80. https://doi.org/10.1016/j.chemosphere.2016.02.090

    Article  CAS  Google Scholar 

  • World Health Organization (2004) Endrin in drinking water, endrin in drinking-water, background document for development of WHO Guidelines for Drinking-water Quality

  • Wu TY, Guo N, Teh CY, & Hay JXW (2013) Theory and fundamentals of ultrasound. In Advances in Ultrasound Technology for Environmental Remediation. Springer, Netherlands, pp 5-12

  • Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Process 34:1033–1065

    Article  CAS  Google Scholar 

  • Yaacob WZW, Kamaruzaman N, Samsudin AR (2012) Development of nano-zero valent iron for the remediation of contaminated water. Chem Eng Trans 28:25–30

    Google Scholar 

  • Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain Isa M (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36. https://doi.org/10.1016/j.jiec.2014.10.043

    Article  CAS  Google Scholar 

  • Zhang J, Li J, Thring R, Liu L (2013) Application of ultrasound and Fenton’s reaction process for the treatment of oily sludge. Procedia Environ Sci 18:686–693

    Article  CAS  Google Scholar 

  • Zupanc M, Kosjek T, Petkovšek M, Dular M, Kompare B, Širok B, Blažeka Ž, Heath E (2013) Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason Sonochem 20(4):1104–1112. https://doi.org/10.1016/j.ultsonch.2012.12.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassim Olasunkanmi Badmus.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badmus, K.O., Tijani, J.O., Massima, E. et al. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environ Sci Pollut Res 25, 7299–7314 (2018). https://doi.org/10.1007/s11356-017-1171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1171-z

Keywords

Navigation