Skip to main content
Log in

Spatial distribution and potential biological risk of some metals in relation to granulometric content in core sediments from Chilika Lake, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The article presents first systematic report on the concentration of selected major elements [iron (Fe) and manganese (Mn)] and minor elements [zinc (Zn), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni), and cobalt (Co)] from the core sediment of Chilika Lake, India. The analyzed samples revealed higher content of Pb than the background levels in the entire study area. The extent of contamination from minor and major elements is expressed by assessing (i) the metal enrichments in the sediment through the calculations of anthropogenic factor (AF), pollution load index (PLI), Enrichment factor (EF), and geoaccumulation index (Igeo) and (ii) potential biological risks by the use of sediment quality guidelines like effect range median (ERM) and effect range low (ERL) benchmarks. The estimated indices indicated that sediment is enriched with Pb, Ni, Cr, Cu and Co. The enrichment of these elements seems to be due to the fine granulometric characteristics of the sediment with Fe and Mn oxyhydroxides being the main metal carriers and fishing boats using low grade paints, fuel, and fishing technology using lead beads fixed to fishing nets. Trace element input to the Chilika lake needs to be monitored with due emphasis on Cr and Pb contaminations since the ERM and ERL benchmarks indicated potential biological risk with these metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikary SP, Sahu JK (1992) Distribution and seasonal abundance of algal forms in Chilka Lake,East Coast of India. Jpn J Limnol 53(3):197–205

    Article  Google Scholar 

  • Algarsamy R (2009) Geochemical variability of copper and iron in Oman margin sediments. Microchem J 91:111–117

    Article  CAS  Google Scholar 

  • Alve E, Lepland A, Magnusson J, Backer-Owe K (2009) Monitoring strategies for re-establishment of ecological reference conditions: ossibilities and limitations. Mar Poll Bull 59:297–310

    Article  CAS  Google Scholar 

  • Ansari KGMT, Pattnaik AK, Rastogi G, Bhadury P (2016) Multiple spatial scale analysis provide an understanding of benthic macro-invertebrate community structure across a Lagoonal ecosystem. Wetlands. https://doi.org/10.1007/s13157-016-0866-0

  • Asa SC, Rath P, Panda UC, Parhi PK, Bramha S (2013) Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara estuary, East Coast of India. Environ Monitor Assess 185(8):6719–6737

    Article  CAS  Google Scholar 

  • Badr NBE, El-Fiky AA, Mostafa AR, Al-Mur BA (2009) Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ Monit Assess 155:509–526 b

    Article  CAS  Google Scholar 

  • Balistrieri LS, Murray JW (1986) The surface chemistry of sediments from the Panama basin: the influence of Mn oxides on metal adsorption.Geochim. Cosmochim Acta 48:921–929

    Article  Google Scholar 

  • Banerjee S, Pramanik A, Sengupta S, Chattopadhyay D, Bhattacharyya M (2017) Distribution and source identification of heavy metal concentration in Chilika Lake, Odisha India: an assessment over salinity gradient. Curr Sci. https://10.18520/cs/v112/i01/87-94

  • Barik SK, Bramha SN, Mohanty AK, Bastia TK, Behera D, Rath P (2016) Sequential extraction of different forms of phosphorus in the surface sediments of Chilika lake. Arab J Geosci 9:135

    Article  CAS  Google Scholar 

  • Barik SK, Muduli PR, Mohanty B, Behera AT, Mallick S, Das A, Samal RN, Rastogi G, Pattnaik AK (2017) Spatio-temporal variability and the impact of Phailin on water quality of Chilika lagoon. Cont Shelf Res 136:39–56

    Article  Google Scholar 

  • Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice lagoon: the role of the industrial area. Sci Total Environ 295:35–49

    Article  CAS  Google Scholar 

  • Bhattacharya NC, Radin JW, Kimball B, Mauney JR, Hendrey GR, Nagy J, Lewin KF, Ponce DC (1994) Leaf water relations of cotton in a free air CO2-enriched environment. Agric For Meteorol 70:171–182

    Article  Google Scholar 

  • Borma LS, Ehrlich M, Barbosa MC (2003) Acidification and release of heavy metals in dredged sediments. Can Geotech J 40:1154–1163

    Article  Google Scholar 

  • Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK, Prasad MVR, Chakraborty S, Bhattacharya BD (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33(3):346–356

    Article  CAS  Google Scholar 

  • Chen CW, Kao CM, Chen CF, Dong CD (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66:1431–1440

    Article  CAS  Google Scholar 

  • Ciesielski T, Pastukhov MV, Szefer P, Jenssen BM (2010) Bioaccumulation of mercury in the pelagic food chain of the Lake Baikal. Chemosphere 78:1378–1384

    Article  CAS  Google Scholar 

  • Das S (2008) Dolphins better off in Chilika - survey reveals dip in death toll of Irrawaddy school. The Telegraph (Calcutta):12–25

  • Deely JM, Fergusson JE (1994) Heavy metal and organic matter concentration and distributions in dated sediments of a small estuary adjacent to a small urban area. Sci Total Environ 153:97–111

    Article  CAS  Google Scholar 

  • El-Nemr A, Khaled A, El-Sikaily A (2006) Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez gulf. Environ Monit Assess 118(1–3):89–112

    Article  CAS  Google Scholar 

  • Filho EV, Silva MP, Jonathan MP, Chatterjee M, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK (2011) Ecological consideration of trace element contamination in sediment cores from Sundarban wetland, India. Environ Earth Sci 63:1213–1225

    Article  CAS  Google Scholar 

  • Fang T, Hong E (1999) Mechanisms influencing the spatial distribution of trace metals in surficial sediments off the southwestern Taiwan. Mar Pollut Bull 38(11):1026–1037

    Article  CAS  Google Scholar 

  • Förstner U, Wittmann GT (1983) Metal pollution in aquatic environment. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, p 486

    Google Scholar 

  • Gati G, Pop C, Brudaşcă F, Gurzău AE, Spînu M (2016) The ecological risk of heavy metals in sediment from the Danube Delta. Ecotoxicology 25(4):688–696

    Article  CAS  Google Scholar 

  • Ghosh AK, Pattnaik AK, Ballatore TJ (2006) Chilika lagoon: restoring ecological balance and livelihoods through re-salinization. Lakes Reserv Rese Manag 11:239–255

    Article  Google Scholar 

  • Gupta GVM, Sarma VVSS, Robin RS, Raman AV, Kumar M, Rakesh M, Subramanian BR (2008) Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochem 87(3):265–285

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Harikumar PS, Jisha TS (2010) Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. Int J Eng Sci Technol 2(5):840–850

    Google Scholar 

  • Harikumar PS, Nasir UP (2010) Ecotoxicological impact assessment of heavymetals in core sediments of a tropical estuary. Ecotoxicol Environ Safe 73:1742–1747

    Article  CAS  Google Scholar 

  • Hirner AV, Kristsotakis K, Tobschall HJ (1990) Metal-organic association in sediments: comparison of unpolluted recent and ancient sediments and sediments affected by anthropogenic pollution. Appl Geochem 5:491–505

    Article  CAS  Google Scholar 

  • Hosono T, CC S, Siringan F, Amano A, Onodera S (2010) Effects of environmen-tal regulations on heavy metal pollution decline in core sediments from Manila Bay. Mar Pollut Bull 60:780–785

    Article  CAS  Google Scholar 

  • Huang P, Li T, Li A, Yu X, Hu N (2014) Distribution, enrichment and sources of heavy metals in surface sediments of the north Yellow Sea. Cont Shelf Res 73:1–13

    Article  Google Scholar 

  • Jamshidi-Zanjani A, Saeedi M (2017) Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9248-2

  • Jayaraju N, Surya Kumar I, Reddy KR (2007) Foraminiferal species densities and environmental variables of Pulicat Lake, south east coast of India. J Geol Soc India 70:829–836

    Google Scholar 

  • Jayaraman G, Rao AD, Dube A, Mohanty PK (2007) Numerical simulation of circulation and salinity structure in Chilika lagoon. J Coast Res 23(4):861–877

    Article  Google Scholar 

  • Jefferies DJ, Freestone P (1984) Chemical analysis of some coarse fish from a Suffolk River carried out as part of the preparation for the first release of captive bred otters. J Otter Trus 8:17–22

    Google Scholar 

  • Jonathan MP, Sarkar SK, Roy PD, Alam Md A, Chatterjee M, Bhattacharya BD, Bhattacharya A, Satpathy KK (2010) Acid leachable trace metals in sediment cores from Sunderban mangrove wetland, India: an approach towards regular monitoring. Ecotoxicology 19:405–418

    Article  CAS  Google Scholar 

  • Kemp ALW, Thomas RL (1976) Impact of man's activities on the chemical composition in the sediments of lakes Ontario, Erie and Huron. Water Air Soil Pollut 5:469–490

    Article  CAS  Google Scholar 

  • Krumbain WC, Petti John FJ (1938) Manual of sedimentary petrography. Appleton Century Crofts, New York

    Google Scholar 

  • Kükrer S, Erginal AE, Şeker S, Karabıyıkoğlu M (2015) Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environ Monit Assess 187:453

    Article  CAS  Google Scholar 

  • Kumar A, Ramanathan AL, Prasad MBK, Datta D, Kumar M, Sappal SM (2016) Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6086-6

  • Lepland A, Andersen TJ, Lepland A, Arp HPH, Alve E, Breedveld GD, Rindby A (2010) Sedimentation and chronology of heavy metal pollution in Oslo harbor, Norway. Mar Poll Bull 60:1512–1522. https://doi.org/10.1016/j.marpolbul.2010.04.017

    Article  CAS  Google Scholar 

  • Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River estuary. Environ Pollut 121:377–388

    Article  CAS  Google Scholar 

  • Li J (2014) Risk assessment of heavy metals in surface sediments from the Yanghe river, China. Int J Environ Res Pub Heal 11:12441–12453

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine estuarine sediments. Environ Manag 19(1):81–97

    Article  Google Scholar 

  • Mahanty MM, Mohanty PK, Pattnaik AK, Panda US, Pradhan S, Samal RN (2016) Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: measurement and modelling. Cont Shelf Res. https://doi.org/10.1016/j.csr.2016.06.017

  • McDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  Google Scholar 

  • Mohanty SK (1975) Some observations on the physico-chemical features of the outer channel of the Chilika Lake during 1971–73. Bull Dept. Mar Sci 7(1):69–89

    Google Scholar 

  • Mohanty PK, Panda US (2009) Circulation and mixing pattern in Chilika lagoon, Indian. J Mar Sci 38(2):205–214

    CAS  Google Scholar 

  • Mohanty RK, Mohapatra A, Mohanty SK (2009) Assessment of the impacts of a new artificial lake mouth on the hydrobiology and fisheries of Chilika Lake, India. Lakes Reserv Res Manag 14(3):231–245

    Article  CAS  Google Scholar 

  • Mohanty B, Muduli PR, Behera AT, Mahapatro D, Barik SK, Nag SK, Samal RN, Pattnaik AK (2016) Assessment of petroleum hydrocarbon in a tropical brackish water lagoon: Chilika, India. Chem. Ecol 32(7):653–668. https://doi.org/10.1080/02757540.2016.117752

    Article  CAS  Google Scholar 

  • Mohanty B, Muduli PR, Cooper G, Barik SK, Mahapatro D, Behera AT, Pattnaik AK (2017) Sources and variability of petroleum hydrocarbon residues in sediments of Chilika lagoon, East Coast of India. Bull Environ Contam Toxicol 99:100–107. https://doi.org/10.1007/s00128-017-2057-y

    Article  CAS  Google Scholar 

  • Muduli PR, Vardhan Kanuri V, Robin RS, Charan Kumar B, Patra S, Raman AV, Nageswara Rao G, Subramanian BR (2013) Distribution of dissolved inorganic carbon and net ecosystem production in a tropical brackish water lagoon, India. Cont Shelf Res 64:75–87

    Article  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in the sediments of the Rhine River. Geophy. J R Astron Soc 2:108–118

    Google Scholar 

  • Naik S, Panigrahy RC, Mohapatra A (2008) Spatio-temporal distribution of zooplankton in chilka lake- a ramsar site on the Indian east coast. Ind. J Sci Tech 1(3):1–6

    Google Scholar 

  • Nayak BK, Acharya BC, Panda UC, Nayak BB, Acharya SK (2004) Variation in the water quality in the Chilka lake. Ind. J Mar Sci 33:164–169

    CAS  Google Scholar 

  • Neidhardt H, Berner ZA, Freikowski D, Biswas A, Majumder S (2014) Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations. Chem Geol 367:51–62

    Article  CAS  Google Scholar 

  • Ningjing H, Peng H, Hui Z, Wang Z, Xiaojing W, Aimei Z, Jihua L, Xuefa S (2017) Geochemical source,deposition, and environmental risk assessment of cadmium in surface and core sediments from the Bohai Sea. China Environ Sci and Pollu Resh 24(1):827–843. https://doi.org/10.1007/s11356-016-7800-0

    Article  CAS  Google Scholar 

  • Niencheski LF, Windom HL, Smith R (1994) Distribution of particulate trace metal in Patos lagoon estuary (Brazil). Mari Pollut Bull 28:96–102

    Article  CAS  Google Scholar 

  • Nirmala K, Ramesh R, Ambujam NK, Arumugam K, Srinivasalu S (2016) Geochemistry of surface sediments of a tropical brackish water lake in South Asia. Environ Earth Sci 75:247

    Article  CAS  Google Scholar 

  • Nixon JF (1988) Coordination chemistry of compounds containing phosphorus-carbon multiple bonds. Chem Rev 88(7):1327–1362

    Article  CAS  Google Scholar 

  • NLA (1995) Ban do dia chat va khoang san Viet Nam 1:200 000 [cartographic material] = geological and mineral resources map of Viet Nam on 1:200 000. Geological Survey of Vietnam, Hanoi, Vietnam

    Google Scholar 

  • Olutona GO, Akindele EO, Ayanda OS (2016) Sediment-associated trace and major metals in the headwaters of a tropical reservoir. Chem Ecol 32(7):624–637. https://doi.org/10.1080/02757540.2016.1171322

    Article  CAS  Google Scholar 

  • Pal SR, Mohanty PK (2002) Use of IRS-1B data for change detection in water quality and vegetation of Chilika lagoon, East Coast of India. Int J Remot Sens 23(6):1027–1042

    Article  Google Scholar 

  • Panda D, Subramanian V, Panigrahy RC (1995) Geochemical fractionation of heavy metals in Chilika Lake (east coast of India)—a tropical coastal lagoon. Environ Geol 26(4):199–210

    Article  CAS  Google Scholar 

  • Panda UC, Rath P, Brahma SN, Sahu KC (2010) Application of factor analysis in geochemical speciation of heavy metals in the sediments of a lake system—Chilika (India): a case study. J Coast Res 26(5):860–868

    Article  CAS  Google Scholar 

  • Panda UC, Rath P, Sahu KC, Majumdar S, Sundaray SK (2006) Study of geochemical association of some trace metals in the sediments of Chilika Lake: a multivariate statistical approach. Environ Monit Assess 123(1–3):125–150

    Article  CAS  Google Scholar 

  • Panigrahi S (2006) Seasonal variability of phytoplankton productivity and related physicochemical parameters in the Chilika Lake and its Adjoining Sea (Ph.D. Thesis). Berhampur University, India

  • Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika lagoon, India). Limnology 10(2):73–85

    Article  CAS  Google Scholar 

  • Panigrahy RC (1985) Phytoplankton and primary productivity in Chilka Lake. Ph.D. Thesis, Berhampur University, India

  • Parida S, Barik SK, Mohanty B, Muduli PR, Mohanty SK, Samanta S, Pattanaik AK (2017) Trace metal concentrations in euryhaline fish species from Chilika lagoon: human health risk assessment. Int J Environ Sci Techno. https://doi.org/10.1007/s13762-017-1334-y

  • Patnaik S (1978) Distribution and abundance of some algal forms in Chilika Lake. J Inlan Fish Soc India 10:56–57

    Google Scholar 

  • Pedersen F, Bjurnestad E, Andersen HV, Kjøholt J, Poll C (1998) Characterization of sediments from Copenhagen harbour by use of biotests. Water Sci Technol 37(6–7):233–240

    Article  CAS  Google Scholar 

  • Pekey H, Karakas D, Ayberk S, Tolun L, Bakoglu M (2004) Ecological risk assessment using trace elements from surface sediments of Izmit Bay (northeastern Marmara Sea) Turkey. Mar Pollut Bull 48:946–953

    Article  CAS  Google Scholar 

  • Perin G, Bonardi M, Fabris R, Simoncini B, Manente S et al (1997) Heavy metal pollution in central Venice lagoon bottom sediments: evaluation of the metal bioavailability by geochemical speciation procedure. Environ Tech 18:593–604

    Article  CAS  Google Scholar 

  • Pradhan S, Mishra SK, Baral R, Samal RN, Mohanty PK (2017) Alongshore sediment transport near tidal inlets of Chilika lagoon; east coast of India. Mar Geod. https://doi.org/10.1080/01490419.2017.1299059

  • Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ (2007) Factor-cluster analysis and enrichment study of mangrove sediments-an example from Mengkabong, Sabah. Malaysian J Anal Sci 11(2):421–430

    Google Scholar 

  • Qasim SZ (1980) Adaptation in phytoplankton to changing conditions in tropical estuaries. Mahasagar – Bull Nation Inst Oceanogr 13:117–124

    Google Scholar 

  • Raman AV, Satyanarayana C, Adiseshasai K, Prakash KP (1990) Phytoplankton characteristic of Chilika lake, a brackish water lagoon along the east coast of India. Ind. J Mar Sci 19:274–277

    Google Scholar 

  • Read JF (1995) Overview of carbonate platform sequences, cycle stratigraphy and reservoirs in greenhouse and ice-house worlds. In: Read JF, Kerans C, Weber LJ, Sarg JF, Wright FM (eds) Milankovitch sea-level changes, cycles, and reservoirs on carbonate platforms in greenhouse and ice-house worlds, SEPM short course no. 35. SEPM, Oklahama, pp 1–102

    Google Scholar 

  • Romano S, Mugnai C, Giuliani S, Turetta C, Cu NH, Bellucci LG, Nhon DH, Capodaglio G, Frignani M (2012) Heavy metals in sediment cores from nine coastal lagoons in Central Vietnam. Am J Env Sci 8:130–142. https://doi.org/10.3844/ajessp.2012.130.142

    Article  CAS  Google Scholar 

  • Ruiz-Ferrnandez AC, Paez-Osuna F, Hillari-Marcel C, Soto-Jimenez M, Ghaleb B (2001) Principal component analysis applied to assessment of metal pollution from urban waters in the Culiacan River estuary. Bull Environ Contam Toxicol 67:741–748

    Article  Google Scholar 

  • Saeedi M, Jamshidi-Zanjani A (2015) Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol Indic 58:235–243. https://doi.org/10.1016/j.ecolind.2015.05.047

    Article  Google Scholar 

  • Salem ZB, Ayadi H (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6534-3

  • Sarkar SK (1977) Further studies on seasonal and spatial variations of salinity in Chilika lake. J Inlan Fish Soc India 9:1–9

    Google Scholar 

  • Sarkar A, Bhanumathi L, Balasubrahmanyan MN (1981) Petrology, geochemistry and geochronology of the Chilka Lake igneous complex, Orissa state, India. Lithos 14(2):93–111

    Article  CAS  Google Scholar 

  • Sarkar SK, Satpathy KK, Chatterjee M, Bhattacharya B, Mohanty AK, Panigrahi SN (2012) Chilika lake: its past and present status. In: Bengtson L, Herschy R, Fairbridge R (eds) Encyclopedia of lakes and reservoirs. Springer, Heidelberg, pp 148–156

    Google Scholar 

  • Sarkar SK, Mondal P, Biswas JK, Kwon EE, Ok YS, Rinklebe J (2017) Trace elements in surface sediments of the Hooghly (Ganges) estuary: distribution and contamination risk assessment. Env Geochem and Health. https://doi.org/10.1007/s10653-017-9952-3

  • Sarika PR, Chandramohanakumar N (2008) Geochemistry of heavy metals in the surficial sediments of mangroves of the south west coast of India. Chemi and. Ecol 24(6):437–447

    CAS  Google Scholar 

  • Savvides C, Papadopoulos A, Haralambous KJ, Loizidou M (1995) Sea sediments contaminated with heavy metals: metal speciation and removal. Water Sci Techno 32(9–10):65–73

    Article  CAS  Google Scholar 

  • Sekhar NU (2004) Fisheries in Chilika Lake: how community access and control impacts their management. J Environ Manag 73(3):257–266

    Article  Google Scholar 

  • Simeonova V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis TH (2003) Assessment of the surface water quality in northern Greece. Water Res 37:4119–4124

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)- a case study. Water Res 38:3980–3992

    Article  CAS  Google Scholar 

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocka J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services. Soil 1:665–685

    Article  CAS  Google Scholar 

  • Srichandan S, Kim JY, Bhadury P, Barik SK, Muduli PR, Samal RN, Pattnaik AK, Rastogi G (2015) Spatio temporal distribution and composition of phytoplankton assemblages in a coastal tropical lagoon: Chilika, India. Environ Monit Assess 187(47):1–17

    CAS  Google Scholar 

  • Sutaria D (2007) Irrawaddy dolphin India. Whale and DolphinConservation society. http://www.wdcs.org/submissions_bin/consprojectectirr.pdf. Retrieved 2008 12–25

  • Szefer P, Glasby GP, Pempkowiak J, Kaliszan R (1995) Extraction studies of heavy metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem Geol 120:111–126

    Article  CAS  Google Scholar 

  • Sekabira K, Oryemoriga H, Basamba TA, Mutumba G, Kakudi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J of Environ Sci Technol 7(3):435–446

    Article  CAS  Google Scholar 

  • Thuy HTT, Tobschall HJ, An PV (2000) Trace element distributions in aquatic sediments of Danang – Hoian area, Vietnam. Environ Geol 39:733–740. https://doi.org/10.1007/s002540050487

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffney DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Wiss Meeresunters 33:566–572

    Article  Google Scholar 

  • Trivedy RK, Goel PK (1984) Chemical and biological methods for water pollution studies. Environmental Publications, Karad, India

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth's crust. Geol Soc Am Bull 72:175–192

    Article  CAS  Google Scholar 

  • Unnikrishnan P, Nair SM (2004) Partitioning of trace metals between dissolved and particulate phases in a typical backwater system of Kerala, India. Int J Environ Stud 61(6):659–676

    Article  Google Scholar 

  • Unnikrishnan W, Shahul H, Velayudhan K, Manjula P, Vasu K (2009) Estimation of sedimentation rate in Chilika lake, Orissa using environmental 210Pb isotope systematics. J Appl Geochem 11:102–110

    Google Scholar 

  • USEPA (1986) Microwave assisted acid digestion of sediments, sludges and soils. In: Test Methods for Evaluating Solid Waste. Vol. 1A, 3rd Ed., National Technical Information Service, Springfield

  • Veerasingam S, Vethamony P, Mani Murali R, Fernandes B (2014) Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India. Mar Pollut Bull, https://doi.org/10.1016/j.marpolbul.2014.11.045

  • Waldichuk M (1985) Biological availability of metals to marine organisms. Mar Pollut Bull 16:7–11

    Article  Google Scholar 

  • Walkey A, Black TA (1934) An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Sci 37:23–38

    Google Scholar 

  • Zachmann DW, Mohanti M, Treutler HC, Scharf B (2009) Assessment of element distribution and heavy metal contamination in Chilika Lake sediments (India). Lake Reserv. Res Manag 14:105–125

    CAS  Google Scholar 

  • Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    Article  CAS  Google Scholar 

  • Zingde MD, Desai BN (1979) Mercury in Thane Creek, Bombay Harbor. Mar Pollut Bull 12:237

    Article  Google Scholar 

  • Zohra BS, Ayadi H (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6534-3

Download references

Acknowledgements

The authors are thankful to the World Bank for the financial support to SPMU (State Project Management Unit) of ICZMP (Integrated Coastal Zone Management Project) component, Odisha, India and Ex-Chief executive Dr. A.K Pattanaik, Chilika Development Authority, Bhubaneswar. We also wish to thank Mr. Bibhuti Bhusan Dora for preparing location map using GIS. We are thankful to Dr. Philippe Garrigues, Chief Editor and reviewers for their productive comments on the previous form of this manuscript. The authors are also thankful to Mr. Gregory Cooper, University of Southampton, United Kingdom, for the correction of English language during drafting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroja K. Barik.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K., Muduli, P.R., Mohanty, B. et al. Spatial distribution and potential biological risk of some metals in relation to granulometric content in core sediments from Chilika Lake, India. Environ Sci Pollut Res 25, 572–587 (2018). https://doi.org/10.1007/s11356-017-0421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0421-4

Keywords

Navigation