Skip to main content
Log in

Characteristics of ambient ozone (O3) pollution and health risks in Zhejiang Province

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Troposphere ozone, which is from secondary formation processes, has been increasing dramatically during the last decades in China, inducing high health risks. In this study, temporal and spatial distribution of O3 was studied among 13 sites of three cities during 2014–2016. The objectives were to clarify the characteristics of the ambient pollution of O3 under the influence from other pollutants and meteorological parameters and the health outcomes from exposure to O3. The concentrations of O3 during summer were much higher than those during winter, and the concentrations in downtown areas were higher than in rural or mountain areas. PM2.5, NO2, SO2, and wind speed (WS) were negatively correlated with O3, and CO, temperature (T), and relative humidity (RH) were positively correlated with O3. In multivariable analysis, two separate factors—solar radiation and atmospheric diffusion status, affected the O3 levels. The concentrations of O3 reached the highest level at 15:00 and the lowest value at about 6:00–8:00, with the similar trend to T and WS, and opposite to RH. According to the dose-response model, relative risks (RRs) and population attributable fractions (PAFs) with confidence intervals (CIs) for chronic obstructive pulmonary disease (COPD) from exposure to O3 were 1.0612 (CI 1.0607–1.0616) and 5.32% (CI 5.29–5.36%), respectively, attributable to 2000 deaths in Zhejiang Province in 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abubakar II, Tillmann T, Banerjee A (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171

    Article  Google Scholar 

  • Anderson HR, Spix C, Medina S, Schouten JP, Castellsague J, Rossi G, Zmirou D, Touloumi G, Wojtyniak B, Ponka A, Bacharova L (1997) Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J 10(5):1064–1071

    Article  CAS  Google Scholar 

  • Bascom R, Bromberg PA, Costa DL, Devlin R, Dockery DW, Frampton MW, Lambert W, Samet JM, Speizer FE, Utell M (1996) Health effects of outdoor air pollution. Am J Respir Crit Care Med 153(2):477–498

    Article  Google Scholar 

  • Calvert JG, Orlando JJ, Stockwell WR, Wallington TJ (2015) The mechanisms of reactions influencing atmospheric ozone. Oxford University Press, Oxford

    Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy H II (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264(5155):74–78

    Article  CAS  Google Scholar 

  • Coates J, Mar K, Ojha N, Butler T (2016) The influence of temperature on ozone production under varying NOx conditions—a modelling study. Atmos Chem Phys 16:11601–11615

    Article  CAS  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389(10082):1907–1918

    Article  Google Scholar 

  • Crouse DL, Peters PA, Hystad P, Brook JR, Donkelaar AV, Martin RV, Villeneuve PJ, Jerrett M, Goldberg MS, Pope III CA, Brauer M, Brook RD, Robichaud A, Menard R, Burnett RT (2015) Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Health Perspect 123(11):1180–1186

  • Dentener F, Keating T, Akimoto H (2011) Hemispheric Transport of Air Pollution 2010, Part A: Ozone and Particulate Matter, Air Pollution Studies No. 17. United Nations, New York

  • Ding AJ, CB F, Yang XQ, Sun JN, Zheng LF, Xie YN, Herrmann E, Petaja T, Kerminen VM, Kulmala M (2013) Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station. Atmos Chem Phys 13(11):5813–5830

    Article  Google Scholar 

  • Gao J, Wang T, Ding A, Liu C (2005) Observational study of ozone and carbon monoxide at the summit of mount Tai (1534m asl) in central-eastern China. Atmos Environ 39(26):4779–4791

    Article  CAS  Google Scholar 

  • General Administration of Quality Supervision, Inspection and Quarantine of P.R.C., Ministry of Health of P.R.C., State Environmental Protection Administration of P.R.C. (2012) Ambient Air Quality Standard of R.P.C. GB 3095-2012, Beijing

  • Ghozikali MG, Mosaferi M, Safari GH, Jaafari J (2015) Effect of exposure to O3, NO2, and SO2 on chronic obstructive pulmonary disease hospitalizations in Tabriz, Iran. Environ Sci Pollut Res Int 22(4):2817–2823

    Article  CAS  Google Scholar 

  • Han Y, Qi M, Chen Y, Shen H, Liu J, Huang Y, Chen H, Liu W, Wang X, Liu J, Xing B (2015) Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environ Pollut 205:307–314

    Article  CAS  Google Scholar 

  • Hien PD, Bac VT, Tham HC, Nhan DD, Vinh LD (2002) Influence of meteorological conditions on PM2.5 and PM2.5-10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos Environ 36(21):3473–3484

    Article  CAS  Google Scholar 

  • Hoek G, Schwartz JD, Groot B, Eilers P (1997) Effects of ambient particulate matter and ozone on daily mortality in Rotterdam, the Netherlands. Arch Environ Health Int J 52(6):455–463

    Article  CAS  Google Scholar 

  • Huang Y, Shen H, Chen H, Wang R, Zhang Y, Su S, Chen Y, Lin N, Zhuo S, Zhong Q, Wang X, Liu J, Li B, Liu W, Tao S (2014) Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ Sci Technol 48(23):13834–13843

    Article  CAS  Google Scholar 

  • Huang T, Zhu X, Zhong Q, Yun X, Meng W, Li B, Ma J, Zeng E, Tao S (2017) Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014. Environ Sci Technol 51(14):7992–8000

    Article  CAS  Google Scholar 

  • Jerrett M, Burnett RT, Ma R, Pope CA III, Krewski D, Newbold KB, Thurston G, Shi Y, Finkelstein N, Calle EE, Thun MJ (2005) Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16(6):727–736

    Article  Google Scholar 

  • Karaca F, Alagha O, Ertürk F (2005) Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere 59(8):1183–1190

    Article  CAS  Google Scholar 

  • Kermani M, Jafari AJ, Rezaei R, Sadat SF, Kahe TS, Dowlati M (2017) Evaluation of chronic obstructive pulmonary disease attributed to atmospheric O3, NO2 and SO2 in Tehran City, from 2005 to 2014. Iran J Health 4(3):758–766

    Google Scholar 

  • Kleffmann J (2007) Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. ChemPhysChem 8(8):1137–1144

    Article  CAS  Google Scholar 

  • Latif MT, Dominick D, Ahamad F, Ahamad NS, Khan MF, Juneng L, Xiang CJ, Nadzir MSM, Robinson AD, Mead MI (2016) Seasonal and long-term variations of surface ozone concentrations in Malaysian Borneo. Sci Total Environ 573:494–504

    Article  CAS  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367–371

    Article  CAS  Google Scholar 

  • Li M, Zhu Y, Carey J, Wu Z, Wang S, Xie Y, Liang J, Zhu Z, Ye D, Yu B (2016) Dynamic source contribution analysis of ozone and its preliminary application. Acta Sci Circumst 36(7):2297–2304

    CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  Google Scholar 

  • Loeffler MJ, Hudson RL (2016) What is eating ozone? Thermal reactions between SO2 and O3: implications for icy environments. Astrophys J Lett 833(1):L9

    Article  Google Scholar 

  • Meng J, Liu J, Xu Y, Tao S (2015) Tracing primary PM2.5 emissions via Chinese supply chains. Environ Res Lett 10(5):054005

    Article  Google Scholar 

  • Meng J, Liu J, Xu Y, Guan D, Liu Z, Huang Y, Tao S (2016) In globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption. Proc R Soc A. https://doi.org/10.1098/rspa.2016.0380

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  CAS  Google Scholar 

  • Ostro B (2004) Outdoor air pollution: assessing the environmental burden of disease at national and local levels. WHO, Geneva

    Google Scholar 

  • Pudasainee D, Sapkota B, Shrestha ML, Kaga A, Kondo A, Inoue Y (2006) Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmos Environ 40(40):8081–8087

    Article  CAS  Google Scholar 

  • Qi M, Zhu X, Du W, Chen Y, Chen Y, Huang T, Pan X, Zhong Q, Sun X, Zeng EY, Xing B (2017) Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing. Environ Pollut 220:704–712

    Article  CAS  Google Scholar 

  • Reeves CE, Penkett SA, Bauguitte S, Law KS, Evans MJ, Bandy BJ, Monks PS, Edwards GD, Phillips G, Barjat H, Kent J, Dewey K, Schmitgen S, Kent J (2002) Potential for photochemical ozone formation in the troposphere over the North Atlantic as derived from aircraft observations during ACSOE. J Geophys Res Atmos 107(D23 ACH 14):1–14

    Google Scholar 

  • Riedel TP, Wolfe GM, Danas KT, Gilman JB, Kuster WC, Bon DM, Vlasenko A, Li SM, Williams EJ, Lerner BM, Veres PR (2014) An MCM modeling study of nitryl-chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmos Chem Phys 14(8):3789–3800

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, Hoboken

    Google Scholar 

  • Shahriar MT, Kadiyala A, Kommalapati R, Huque Z (2015) A review of ozone studies in the Houston− Galveston− Brazoria Nonattainment area. Trace materials in air, soil, and water, American Chemical Society, Washington, DC, Chapter 2, pp 37–50

  • Stathopoulou E, Mihalakakou G, Santamouris M, Bagiorgas HS (2008) On the impact of temperature on tropospheric ozone concentration levels in urban environments. J Earth Syst Sci 117(3):227–236

    Article  CAS  Google Scholar 

  • Tai AP, Mickley LJ, Jacob DJ (2010) Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change. Atmos Environ 44(32):3976–3984

    Article  CAS  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38(21):3431–3442

    Article  CAS  Google Scholar 

  • Walcek CJ, Yuan HH (1995) Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere. J Appl Meteorol 34(5):1056–1069

    Article  Google Scholar 

  • Wang T, Ding A, Gao J, Wu WS (2006a) Strong ozone production in urban plumes from Beijing, China. Geophys Res Lett 33(21):320-337

  • Wang H, Zhou L, Tang X (2006b) Ozone concentrations in rural regions of the Yangtze Delta in China. J Atmos Chem 54(3):255–265

    Article  Google Scholar 

  • Wang T, Wei XL, Ding AJ, Poon SCN, Lam KS, Li YS, Chan LY, Anson M (2009) Increasing surface ozone concentrations in the background atmosphere of southern China, 1994–2007. Atmos Chem Phys 9(16):6217–6227

    Article  CAS  Google Scholar 

  • Wang R, Tao S, Wang W, Liu J, Shen H, Shen G, Wang B, Liu X, Li W, Huang Y, Zhang Y (2012) Black carbon emissions in China from 1949 to 2050. Environ Sci Technol 46(14):7595–7603

    Article  CAS  Google Scholar 

  • Wang T, Xue L, Brimblecombe P, Lam YF, Li L, Zhang L (2016) Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci Total Environ 575:1582–1596

    Article  Google Scholar 

  • World Health Organization (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005, Summary of risk assessment. http://www.euro.who.int/Document/E87950.pdf

  • Zhang Q, Streets DG, Carmichael GR, He K, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu J, Chen D, Duan L, Lei Y, Wang L, Yao Z (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153

    Article  CAS  Google Scholar 

  • Zhang Q, Ye J, Chen J, Xu H, Wang C, Zhao M (2014) Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environ Pollut 185:258–265

    Article  CAS  Google Scholar 

  • Zhang Q, Ji C, Yin X, Yan L, Lu M, Zhao M (2016) Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches. Environ Pollut 210:27–33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41701584 and 21337005), China Postdoctoral Science Foundation (2017M612025), and Natural Science Foundation of Zhejiang Province (LZ15B07000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

The supplementary materials related to this paper can be found on the Internet.

ESM 1

(DOCX 77 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zang, L., Chen, J. et al. Characteristics of ambient ozone (O3) pollution and health risks in Zhejiang Province. Environ Sci Pollut Res 24, 27436–27444 (2017). https://doi.org/10.1007/s11356-017-0339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0339-x

Keywords

Navigation