Skip to main content
Log in

Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Switchgrass biochar (SGB) was made by fast pyrolysis in an auger-fed reactor at 425 °C with a solid residence time of 60 s in the pyrolysis zone during bio-oil production. Magnetic switchgrass biochar (MSGB) was prepared by iron oxide precipitation onto the biochar surface using an aqueous Fe3+/Fe2+ solution followed by NaOH treatment. Both the SGB and the MSGB were characterized by FTIR, SEM, SEM-EDX, TGA, pHpzc, elemental analysis, and surface area measurements. Batch sorption studies of metribuzin from aqueous solutions were carried out at different pH values, adsorbate concentrations, and temperatures. The adsorption of metribuzin onto both biochars was highest at a pH of 2. Adsorption isotherms were evaluated from 25 to 45 °C using the Freundlich, Langmuir, Redlich-Peterson, Toth, Sips, Koble-Corrigan, and Radke-Prausnitz adsorption models. Langmuir adsorption capacities at pH 2 were Q 0 SGB ~ 151, 223, and 205 mg/g and Q 0 MSGB ~ 155, 205, and 155 mg/g at 25, 35, and 45 °C, respectively. Low-cost magnetization of the biochar occurred without significant loss of absorption capacity, enabling facile separation of slurried biochar from liquids following contaminate absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal V, Li H, Teppen BJ (2006) Triazine adsorption by saponite and beidellite clay minerals. Environ Toxicol Chem 25(2):392–399

    Article  CAS  Google Scholar 

  • Antonopoulou M, Konstantinou I (2014) Photocatalytic treatment of metribuzin herbicide over TiO2 aqueous suspensions: removal efficiency, identification of transformation products, reaction pathways and ecotoxicity evaluation. J Photoch Photobio A 294:110–120. doi:10.1016/j.jphotochem.2014.08.008

    Article  CAS  Google Scholar 

  • Baig SA, Zhu J, Muhammad N, Sheng T, Xu X (2014) Effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass Bioenerg 71:299–310

    Article  CAS  Google Scholar 

  • Boateng AA, Mullen CA, Goldberg NM, Hicks KB et al (2010) Sustainable production of bioenergy and biochar from the straw of high-biomass soybean lines via fast pyrolysis. Environ Prog Sustain Energy 29(2):175–183. doi:10.1002/ep.10446

    Article  CAS  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28(3):386–396

    Article  CAS  Google Scholar 

  • Cerejeira M, Viana P, Batista S, Pereira T et al (2003) Pesticides in Portuguese surface and ground waters. Water Res 37(5):1055–1063

    Article  CAS  Google Scholar 

  • Essandoh M, Kunwar B, Pittman CU Jr, Mohan D, Mlsna T (2015) Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem Eng J 265:219–227. doi:10.1016/j.cej.2014.12.006

    Article  CAS  Google Scholar 

  • Fairchild JF, Sappington LC (2002) Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms. Arch Environ Contam Toxicol 43:198–202

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S, Tyagi I (2014) Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci 417:420–430

    Article  CAS  Google Scholar 

  • Henriksen T, Svensmark B, Juhler RK (2002) Analysis of metribuzin and transformation products in soil by pressurized liquid extraction and liquid chromatographic-tandem mass spectrometry. J Chromatogr A 957(1):79–87

    Article  CAS  Google Scholar 

  • Huertas-Pérez JF, del Olmo IM, García-Campaña AM, González-Casado A, Sánchez-Navarro A (2006) Determination of the herbicide metribuzin and its major conversion products in soil by micellar electrokinetic chromatography. J Chromatogr A 1102(1–2):280–286. doi:10.1016/j.chroma.2005.10.052

    Article  Google Scholar 

  • Janke D (1989) Herbicides—chemistry, degradation, and mode of action. Marcel Dekker Inc, New York

    Google Scholar 

  • Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, Labbé N (2011) Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuel 25(10):4693–4703

    Article  CAS  Google Scholar 

  • Komulainen H (2004) Experimental cancer studies of chlorinated by-products. Toxicol 198(1–3):239–248. doi:10.1016/j.tox.2004.01.031

    Article  CAS  Google Scholar 

  • Kumar YB, Singh N, Singh SB (2013) Removal of atrazine, metribuzin, metolachlor and alachlor by granular carbon. J Environ Anal Toxicol 3(7):1–5

    Google Scholar 

  • Lagergren S, Svenska BK, Swed R (1898) Acad Sci Doc Band 24:1–13

    Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181. doi:10.2134/agrojnl2007.0161

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  • Lawrence JR, Eldan M, Sonzogni WC (1993) Metribuzin and metabolites in Wisconsin (U.S.A.) well water. Water Res 27(8):1263–1268. doi:10.1016/0043-1354(93)90212-Z

    Article  CAS  Google Scholar 

  • Liu Y, Zhu X, Qian F, Zhang S, Chen J (2014) Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Adv 4(109):63620–63626. doi:10.1039/C4RA11815D

    Article  CAS  Google Scholar 

  • McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agric Ecosyst Environ 129(1–3):1–7. doi:10.1016/j.agee.2008.08.006

    Article  CAS  Google Scholar 

  • Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU Jr (2011a) Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J Hazard Mater 188(1–3):319–333. doi:10.1016/j.jhazmat.2011.01.127

    Article  CAS  Google Scholar 

  • Mohan D, Sarwat A, Singh VK, Alenxandre-Franco M, Pittman CU Jr (2011b) Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem Eng J 172(2–3):1111–1125. doi:10.1016/j.cej.2011.06.054

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW et al (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3(1):195–206

    CAS  Google Scholar 

  • Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40(12):2177–2183. doi:10.1016/S0008-6223(02)00076-3

    Article  CAS  Google Scholar 

  • Olsen P, Henriksen T, Ullum M (2005) Leaching of metribuzin metabolites and the associated contamination of a sandy Danish aquifer. Environ Sci Technol 39(21):8374–8381. doi:10.1021/es0506758

    Article  Google Scholar 

  • Osteen CD, Fernandez-Cornejo J (2013) Economic and policy issues of U.S. agricultural pesticide use trends. Pest Manag Sci 69(9):1001–1025. doi:10.1002/ps.3529

    Article  CAS  Google Scholar 

  • Pittman CU Jr, Mohan D, Eseyin A, Li Q et al (2012) Characterization of bio-oils produced from fast pyrolysis of corn stalks in an auger reactor. Energy Fuel 26(6):3816–3825. doi:10.1021/ef3003922

    Article  CAS  Google Scholar 

  • Pot V, Benoit P, Menn ML, Eklo O-M, Sveistrup T, Kværner J (2011) Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modelling to evaluate the risk of leaching in a sandy loam soil profile. Pest Manag Sci 67(4):397–407. doi:10.1002/ps.2077

    Article  CAS  Google Scholar 

  • Sha’ato R, Buncel E, Gamble D, VanLoon G (2000) Kinetics and equilibria of metribuzin sorption on model soil components. Can J Soil Sci 80(2):301–307

    Article  Google Scholar 

  • Singh N (2009) Adsorption of herbicides on coal fly ash from aqueous solutions. J Hazard Mater 168(1):233–237. doi:10.1016/j.jhazmat.2009.02.016

    Article  CAS  Google Scholar 

  • Thelin GP, Stone WW (2013). Estimation of annual agricultural pesticide use for counties of the conterminous United States, 1992–2009: US Department of the Interior, US Geological Survey

  • Tiryaki O, Temur C (2010) The fate of pesticide in the environment. J Biol Environ Sci 4(10):29–38

    Google Scholar 

  • Tombacz E, Majzik A, Horvat Z, Illes E (2006) Magnetite in aqueous medium: coating its surface and surface coated with it. Rom Rep Phys 58(3):281–286

    CAS  Google Scholar 

  • USEPA (1987). Metribuzin: health advisory. Washington, DC

  • USEPA (2003). Health effect support document for metribuzin

  • Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AICHE J 20(2):228–238. doi:10.1002/aic.690200204

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo J, William WY, Prakash A et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964–967

    Article  Google Scholar 

  • Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge support from the University Grants Commission for the Joint Research Program entitled “Indo-US initiatives on Cleaner Energy and Water Research” between Jawaharlal Nehru University and Mississippi State University and the Mississippi State University Chemistry Department for financial support of this project. The authors would also like to acknowledge Dr. El Barbary Hassan of Mississippi State University for assistance in biochar analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Mlsna.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

ESM 1

(DOCX 1929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essandoh, M., Wolgemuth, D., Pittman, C.U. et al. Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environ Sci Pollut Res 24, 4577–4590 (2017). https://doi.org/10.1007/s11356-016-8188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8188-6

Keywords

Navigation