Skip to main content
Log in

Particle size distribution of inorganic and organic ions in coastal and inland Antarctic aerosol

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The concentration and particle-size distribution of ionic species in Antarctic aerosol samples were determined to investigate their potential sources, chemical evolution, and transport. We analyzed aerosol samples collected at two different Antarctic sites: a coastal site near Victoria Land close to the Italian Research Base “Mario Zucchelli”, and another site located on the Antarctic plateau, close to Italian-French Concordia Research Station. We investigated anionic compounds using ion-chromatography coupled to mass spectrometry, and cationic species through capillary ion chromatography with conductometry. Aerosol collected close to the coast was mainly characterized by sea salt species such as Na+, Mg2+, and SO4 2−. These species represented a percentage of 88% of the total sum of all detected ionic species in the aerosol samples from the coastal site. These species were mainly distributed in the coarse fraction, confirming the presence of primary aerosol near the ocean source. Aerosol collected over the Antarctic plateau was characterized by high acidity, with nss-SO4 2−, NO3 , and methanesulfonic acid as the most abundant species. These species were mainly distributed in the <0.49 μm fraction, and they had a behavior of a typical secondary aerosol, where several chemical and physical processes occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Barbaro E, Kirchgeorg T, Zangrando R, Vecchiato M, Piazza R, Barbante C, Garnbaro A (2015a) Sugars in Antarctic aerosol. Atmos Environ 118:135–144

    Article  CAS  Google Scholar 

  • Barbaro E, Zangrando R, Vecchiato M, Piazza R, Cairns WRL, Capodaglio G, Barbante C, Gambaro A (2015b) Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol. Atmos Chem Phys 15:5457–5469

    Article  CAS  Google Scholar 

  • Becagli S, Scarchilli C, Traversi R, Dayan U, Severi M, Frosini D, Vitale V, Mazzola M, Lupi A, Nava S, Udisti R (2012) Study of present-day sources and transport processes affecting oxidised Sulphur compounds in atmospheric aerosols at dome C (Antarctica) from year-round sampling campaigns. Atmos Environ 52:98–108

    Article  CAS  Google Scholar 

  • Blackall TD, Wilson LJ, Theobald MR, Milford C, Nemitz E, Bull J, Bacon PJ, Hamer KC, Wanless S, Sutton MA (2007) Ammonia emissions from seabird colonies. Geophys Res Lett 34

  • Bliesner DM (2006) Validating chromatographic methods a practical guide. John Wiley & Sons, Inc., Hoboken, New Jersey

    Book  Google Scholar 

  • Cunningham WC, Zoller WH (1981) The chemical composition of remote area aerosols. Journal of Aerosol Sciences 12:367–384

    Article  CAS  Google Scholar 

  • deMora SJ, Wylie DJ, Dick AL (1997) Methanesulphonate and non-sea salt sulphate in aerosol, snow, and ice on the East Antarctic plateau. Antarct Sci 9:46–55

    Google Scholar 

  • Fattori I, Becagli S, Bellandi S, Castellano E, Innocenti M, Mannini A, Severi M, Vitale V, Udisti R (2005) Chemical composition and physical features of summer aerosol at Terra Nova Bay and dome C, Antarctica. J Environ Monit 7:1265–1274

    Article  CAS  Google Scholar 

  • Fiore AM, Naik V, Leibensperger EM (2015) Air quality and climate connections. J Air Waste Manage Assoc 65:645–685

    Article  CAS  Google Scholar 

  • Fu P, Kawamura K, Usukura K, Miura K (2013) Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Mar Chem 148:22–32

    Article  CAS  Google Scholar 

  • Hara K et al. (2004) Chemistry of sea-salt particles and inorganic halogen species in Antarctic regions: compositional differences between coastal and inland stations. J Geophys Res Atmos 109(D20). doi:10.1029/2004JD004713

  • Hillamo R, Allegrini I, Sparapani R, Kerminen V-M (1998) Mass size distributions and precursor gas concentrations of major inorganic ions in’Antarctic aerosol. Int J Environ Anal Chem 71:353–372

    Article  CAS  Google Scholar 

  • IPCC (2007) Synthesis report, contribution of working groups I, II and III to the forth assessment report of the intergovernmental panel on climate change, intergovernmental panel on climate change: climate change 2007. Switzerland, Geneva

    Google Scholar 

  • Jickells TD, Kelly SD, Baker AR, Biswas K, Dennis PF, Spokes LJ, Witt M, Yeatman SG (2003) Isotopic evidence for a marine ammonia source. Geophys Res Lett 30(7). doi:10.1029/2002GL016728

  • Johnson MT, Bell TG (2008) Coupling between dimethylsulfide emissions and the ocean-atmosphere exchange of ammonia. Environ Chem 5:259–267

    Article  CAS  Google Scholar 

  • Jourdain B, Legrand M (2001) Seasonal variations of atmospheric dimethylsulfide, dimethylsulfoxide, sulfur dioxide, methanesulfonate, and non-sea-salt sulfate aerosols at Dumont d’Urville (coastal Antarctica) (December 1998 to July 1999). J Geophys Res-Atmos 106:14391–14408

    Article  CAS  Google Scholar 

  • Jourdain B, Legrand M (2002) Year-round records of bulk and size-segregated aerosol composition and HCl and HNO3 levels in the Dumont d’Urville (coastal Antarctica) atmosphere: implications for sea-salt aerosol fractionation in the winter and summer. J Geophys Res Atmos 107(D22). doi:10.1029/2002JD002471

  • Jourdain B, Preunkert S, Cerri O, Castebrunet H, Udisti R, Legrand M (2008) Year-round record of size-segregated aerosol composition in central Antarctica (Concordia station): implications for the degree of fractionation of sea-salt particles. J Geophys Res Atmos 113(D14). doi:10.1029/2007JD009584

  • Kawamura K, Ikushima K (1993) Seasonal-Changes in the distribution of dicarboxylic-acids in the Urban atmosphere. Environmental Science & Technology 27:2227–2235

    Article  CAS  Google Scholar 

  • Kawamura K, Kasukabe H, Barrie LA (1996a) Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos Environ 30:1709–1722

    Article  CAS  Google Scholar 

  • Kawamura K, Semere R, Imai Y, Fujii Y, Hayashi M (1996b) Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J Geophys Res-Atmos 101:18721–18728

    Article  CAS  Google Scholar 

  • Kawamura K, Sakaguchi F (1999) Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J Geophys Res-Atmos 104:3501–3509

    Article  CAS  Google Scholar 

  • Kerminen VM, Teinila K, Hillamo R (2000) Chemistry of sea-salt particles in the summer Antarctic atmosphere. Atmos Environ 34:2817–2825

    Article  CAS  Google Scholar 

  • Legrand M, Fenietsaigne C, Saltzman ES, Germain C (1992) Spatial and Temporal variations of METHANESULFONIC-acid and non-SEASALT sulfate in Antarctic Ice. J Atmos Chem 14:245–260

    Article  CAS  Google Scholar 

  • Legrand M, Ducroz F, Wagenbach D, Mulvaney R, Hall J (1998) Ammonium in coastal Antarctic aerosol and snow: role of polar ocean and penguin emissions. J Geophys Res-Atmos 103:11043–11056

    Article  CAS  Google Scholar 

  • Legrand M, Pasteur EC (1998) Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow. J Geophys Res-Atmos 103:10991–11006

    Article  CAS  Google Scholar 

  • Legrand M, Gros V, Preunkert S, Sarda-Esteve R, Thierry AM, Pepy G, Jourdain B (2012): A reassessment of the budget of formic and acetic acids in the boundary layer at Dumont d’Urville (coastal Antarctica): The role of penguin emissions on the budget of several oxygenated volatile organic compounds. J Geophys Res Atmos117(6). doi:10.1029/2011JD017102

  • Legrand M, Yang X, Preunkert S, Theys N (2016) Year-round records of sea salt, gaseous, and particulate inorganic bromine in the atmospheric boundary layer at coastal (Dumont d’Urville) and central (Concordia) East Antarctic sites. J Geophys Res-Atmos 121:997–1023

    Article  CAS  Google Scholar 

  • Legrand MR, Delmas RJ (1986) Relative contributions of tropospheric and stratospheric sources to nitrate in Antarctic snow. Tellus, Ser. B 38

  • Legrand MR, Kirchner S (1990) Origins and variations of nitrate in South polar precipitation. J Geophys Res-Atmos 95:3493–3507

    Article  Google Scholar 

  • Matsumoto K, Nagao I, Tanaka H, Miyaji H, Iida T, Ikebe Y (1998) Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the Northwest Pacific Ocean. Atmos Environ 32:1931–1946

    Article  CAS  Google Scholar 

  • Minikin A, Legrand M, Hall J, Wagenbach D, Kleefeld C, Wolff E, Pasteur EC, Ducroz F (1998) Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. J Geophys Res-Atmos 103:10975–10990

    Article  CAS  Google Scholar 

  • Mochida M, Umemoto N, Kawamura K, Lim HJ, Turpin BJ (2007): Bimodal size distributions of various organic acids and fatty acids in the marine atmosphere: Influence of anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia. J Geophys Res Atmos 112(15). doi:10.1029/2006JD007773

  • Morganti A, Becagli S, Castellano E, Severi M, Traversi R, Udisti R (2007) An improved flow analysis-ion chromatography method for determination of cationic and anionic species at trace levels in Antarctic ice cores. Anal Chim Acta 603:190–198

    Article  CAS  Google Scholar 

  • O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud JP (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680

    Article  Google Scholar 

  • Preunkert S, Jourdain B, Legrand M, Udisti R, Becagli S, Cerri O (2008): Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal regions. J Geophys Res Atmos 113(15). doi:10.1029/2008JD009937

  • Rankin AM, Wolff EW (2002) Frost flowers: implications for tropospheric chemistry and ice core interpretation. J Geophys Res Atmos 107(23). doi:10.1029/2002JD002492

  • Rankin AM, Wolff EW (2003) A year-long record of size-segregated aerosol composition at Halley, Antarctica. J Geophys Res Atmos 108(24). doi:10.1029/2003JD003993

  • Saiz-Lopez A, Mahajan AS, Salmon RA, Bauguitte SJ, Jones AE, Roscoe HK, Plane JM (2007) Boundary layer halogens in coastal Antarctica. Science 317:348–351

    Article  CAS  Google Scholar 

  • Sander R, Keene WC, Pszenny AAP, Arimoto R, Ayers GP, Baboukas E, Cainey JM, Crutzen PJ, Duce RA, Honninger G, Huebert BJ, Maenhaut W, Mihalopoulos N, Turekian VC, Van Dingenen R (2003) Inorganic bromine in the marine boundary layer: a critical review. Atmos Chem Phys 3:1301–1336

    Article  CAS  Google Scholar 

  • Schmale J, Schneider J, Nemitz E, Tang YS, Dragosits U, Blackall TD, Trathan PN, Phillips GJ, Sutton M, Braban CF (2013) Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmos Chem Phys 13:8669–8694

    Article  Google Scholar 

  • Smith W, Kalber A (1974): Handbook of marine science. vol. 2.

  • Spolaor A, Vallelonga P, Plane JMC, Kehrwald N, Gabrieli J, Varin C, Turetta C, Cozzi G, Kumar R, Boutron C, Barbante C (2013) Halogen species record Antarctic Sea ice extent over glacial-interglacial periods. Atmos Chem Phys 13:6623–6635

    Article  Google Scholar 

  • Spolaor A, Vallelonga P, Gabrieli J, Martma T, Bjorkman MP, Isaksson E, Cozzi G, Turetta C, Kjaer HA, Curran MAJ, Moy AD, Schoenhardt A, Blechschmidt AM, Burrows JP, Plane JMC, Barbante C (2014) Seasonality of halogen deposition in polar snow and ice. Atmos Chem Phys 14:9613–9622

    Article  CAS  Google Scholar 

  • Teinila K, Kerminen VM, Hillamo R (2000) A study of size-segregated aerosol chemistry in the Antarctic atmosphere. J Geophys Res-Atmos 105:3893–3904

    Article  CAS  Google Scholar 

  • Traversi R, Becagli S, Castellano E, Cerri O, Morganti A, Severi M, Udisti R (2009) Study of dome C site (east Antartica) variability by comparing chemical stratigraphies. Microchem J 92:7–14

    Article  CAS  Google Scholar 

  • Udisti R, Dayan U, Becagli S, Busetto M, Frosini D, Legrand M, Lucarelli F, Preunkert S, Severi M, Traversi R, Vitale V (2012) Sea spray aerosol in Central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions. Atmos Environ 52:109–120

    Article  CAS  Google Scholar 

  • Wang HB, Kawamura K, Yamazaki K (2006) Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean. J Atmos Chem 53:43–61

    Article  CAS  Google Scholar 

  • Weller R, Woeltjen J, Piel C, Resenberg R, Wagenbach D, Koenig-Langlo G, Kriews M (2008) Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer station, Antarctica. Tellus Series B-Chemical and Physical Meteorology 60:742–752

    Article  Google Scholar 

  • Wolfenbarger JK, Seinfeld JH (1990) Inversion of aerosol size distribution data. J Aerosol Sci 21:227–247

    Article  CAS  Google Scholar 

  • Wolff EW, Rankin AM, Rothlisberger R (2003) An ice core indicator of Antarctic sea ice production? Geophys Res Lett 30(22). doi:10.1029/2003GL018454

  • Wyputta U (1997) On the transport of trace elements into Antarctica using measurements at the Georg-von-Neumayer station. Tellus B 49:93–111

    Article  Google Scholar 

  • Xu G, Gao Y, Lin Q, Li W, Chen L (2013) Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer. J Geophys Res-Atmos 118:13303–13318

    Article  CAS  Google Scholar 

  • Yao XH, Fang M, Chan CK (2003) The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmos Environ 37:743–751

    Article  CAS  Google Scholar 

  • Zangrando R, Barbaro E, Vecchiato M, Kehrwald NM, Barbante C, Gambaro A (2016) Levoglucosan and phenols in marine, coastal and inland Antarctic aerosols. Science of Total Environment 544:606–616

    Article  CAS  Google Scholar 

  • Zhuang H, Chan CK, Fang M, Wexler AS (1999) Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmos Environ 33:4223–4233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Italian National Program of Antarctic Research (PNRA) through the project ‘Studio delle sorgenti e dei processi di trasferimento dell’ aerosol atmosferico antartico’ (no. 2009/A2.11). The research was also supported by the National Research Council of Italy (Consiglio Nazionale delle Ricerche, CNR). The authors thank ELGA LabWater for providing the Pure-Laboratory Option-R and Ultra Analytic, which produced the ultrapure water used in these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Barbaro.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Figure S1

(DOCX 28 kb)

Figure S2

(DOCX 65 kb)

Figure S3

(DOCX 135 kb)

Figure S4

(DOCX 20 kb)

Figure S5

(DOCX 106 kb)

Table S1

(DOCX 18 kb)

Table S2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbaro, E., Padoan, S., Kirchgeorg, T. et al. Particle size distribution of inorganic and organic ions in coastal and inland Antarctic aerosol. Environ Sci Pollut Res 24, 2724–2733 (2017). https://doi.org/10.1007/s11356-016-8042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8042-x

Keywords

Navigation