Skip to main content
Log in

Influence of preozonation on the adsorptivity of humic substances onto activated carbon

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research aims to study the influence of preozonation on the adsorptivity of humic substances onto activated carbon, which are usual stages in drinking water treatment. Three different types of humic substances were used in this study: natural fulvic and humic acids extracted from the Úzquiza Reservoir (Burgos, Spain) and a commercially supplied humic acid. The fractionation of the humic substances by ultrafiltration showed a very different molecular weight (MW) distribution for them: the lowest fraction of <1 kDa comprises the vast majority of the fulvic acids (around 86 %), whereas the main fraction for the commercial humic acids was the highest one of >30 kDa (around 40 %). The natural humic acids show an intermediate distribution between the two aforementioned humic substances. The 1–5-kDa fraction turned out to be the most reactive toward trihalomethane formation for the commercial humic acids. The adsorptive capacity of activated carbon for the humic substances was in the following order: natural fulvic acids > natural humic acids > commercial humic acids. The most adsorbable fraction was that of <1 kDa for the fulvic acids, whereas the 5–10-kDa fraction was the most adsorbable for both humic acids. Preozonation changes the MW distribution of the humic substances, decreasing the abundance of the high MW fractions and generating smaller molecules within the low to medium MW range. Adsorption isotherms show that preozonation has a beneficial effect on the adsorptivity of the commercial humic acids onto activated carbon, whereas no appreciable effect was observed for the case of the fulvic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allpike BP, Heitz A, Joll CA, Kagi R (2005) Size exclusion chromatography to characterize DOC removal in drinking water treatment. Environ Sci Technol 39:2334–2342

    Article  CAS  Google Scholar 

  • Amy GL, Sierka RA, Bedessem J, Price D, Tan L (1992) Molecular size distributions of dissolved organic matter. Jour AWWA 84:67–75

    CAS  Google Scholar 

  • Andrews SA, Huck PM (1996) Using fractionated natural organic matter to study ozonation by-product formation. In: Minear RA, Amy G (eds) Disinfection by-products in water treatment—the chemistry of their formation and control. Lewis Publishers, Florida

    Google Scholar 

  • Assemi S, Newcombe G, Hepplewhite C, Beckett R (2004) Characterization of natural organic matter fractions separated by ultrafiltration using flow field-flow fractionation. Water Res 38:1467–1476

    Article  CAS  Google Scholar 

  • Bolea E, Gorriz MP, Bouby M, Laborda F, Castillo JR, Geckeis H (2006) Multielement characterization of metal-humic substances complexation by size exclusión chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach. J Chromatogr A 1129:236–246

    Article  CAS  Google Scholar 

  • Bond T, Goslan EH, Parsons SA, Jefferson B (2011) Treatment of disinfection by-product precursors. Environ Technol 32:1–25

    Article  CAS  Google Scholar 

  • Chang EE, Chiang PC, Ko YW, Lan WH (2001) Characteristics of organic precursors and their relationship with disinfection by-products. Chemosphere 44:1231–1236

    Article  CAS  Google Scholar 

  • Galapate RP, Kitanaka A, Kazuaki I (1997) Origin of trihalomethane precursors in Kurose River, Hiroshima, Japan. Water Sci Technol 35:15

    Article  CAS  Google Scholar 

  • Galapate RP et al. (2001) Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential. Water Res 35:2201

    Article  CAS  Google Scholar 

  • Gang D, Clevenger TE, Banerji SK (2003) Relationship of chlorine decay and THMs formation to NOM size. J Hazard Mat A 96:1–12

    Article  CAS  Google Scholar 

  • Giovanela M, Parlanti E, Soriano-Sierra J, Soldi MS, Sierra MMD (2004) Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochem Jour 38:255–264

    Article  CAS  Google Scholar 

  • Goslan EH, Wilson D, Banks J, Hillis P, Campbell A, Parsons SA (2004) Natural organic matter fractionation: XAD resins versus UF membranes. An investigation into THM formation. Water Sci Technol 4:113–119

    CAS  Google Scholar 

  • Her N, Amy G, Foss D, Cho J (2002) Variations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection. Environ Sci Technol 36:3393–3399

    Article  CAS  Google Scholar 

  • Her N, Amy G, Chung J, Yoon J, Yoon Y (2008) Characterizing dissolved organic matter and evaluating associated nanofiltration membrane fouling. Chemosphere 70:495–502

    Article  CAS  Google Scholar 

  • Ho J, Hainthaler M, Newcombe G (2013) Using UV spectroscopy and molecular weight determinations to investigate the effect of various water treatment processes on NOM removal: Australian case study. J Environ Eng 139:117–126

    Article  CAS  Google Scholar 

  • Hua G, Rechkow DA (2007) Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environ Sci Technol 41:3309–3315

    Article  CAS  Google Scholar 

  • Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—organic carbon detection— organic nitrogen detection (LC-OCD-OND). Water Res 45:879–885

    Article  CAS  Google Scholar 

  • Imai A, Matsushige K, Nagai T (2003) Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake. Water Res 37:4284–4294

    Article  CAS  Google Scholar 

  • Karanfil T et al. (1996) Adsorption of organic macromolecules by granular activated carbon. 1.- influence of molecular properties under anoxic solution conditions. Environ Sci Technol 30:2187

    Article  CAS  Google Scholar 

  • Karanfil T et al. (1998) The oxygen sensitivity of organic macromolecule sorption by activated carbon: effects of solution chemistry. Water Res 32:154

    Article  CAS  Google Scholar 

  • Kilduff JE et al. (1996a) Adsorption of natural organic polyelectrolites by activated carbon: a size-exclusion chromatography study. Environ Sci Technol 30:1336

    Article  CAS  Google Scholar 

  • Kilduff JE et al. (1996b) Competitive interactions among components of humic acids in granular activated carbon adsorption systems: effects of solution chemistry. Environ Sci Technol 30:1344

    Article  CAS  Google Scholar 

  • Kitis M, Karanfil T, Wigton A, Kilduff JE (2002) Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Res 36:3834–3848

    Article  CAS  Google Scholar 

  • Küchler IL, Miekeley N (1994) Ultrafiltration of humic compounds through low molecular mass cut-off level membranes. Sci Total Environ 154:23–28

    Article  Google Scholar 

  • Lambert SD et al. (1995) Removal of non-specific dissolved organic matter from upland potable water supplies—I. Adsorption Water Res 29:2421

    Article  CAS  Google Scholar 

  • Langlais B, Reckhow A, Brink D (1991) Ozone in water treatment: application and engineering. Lewis Publishers, Mich, AWWA Research Foundation & Compagnie Générale des Eaux

    Google Scholar 

  • Li L, Zhao Z, Huang W, Peng P, Sheng G, Fu J (2004) Characterization of humic acids fractionated by ultrafiltration. Org Geochem 35:1025–1037

    Article  CAS  Google Scholar 

  • Liu Y, Wang Q, Zhang S, Lu J, Yue S (2011) NOM reactivity with chlorine in low SUVA water. Jour Wat Supply 60:231–239

    Article  CAS  Google Scholar 

  • Malcolm RL, McCarthy P (1986) Limitations in the use of commercial humic acids in water and soil research. Environ Sci Technol 20:904–911

    Article  CAS  Google Scholar 

  • McCreary JJ, Snoeyink V (1980) Characterization and activated carbon adsorption of several humic substances. Water Res 14:151

    Article  CAS  Google Scholar 

  • Myllykangas T et al. (2002) Molecular size fractions of treated aquatic humus. Water Res 36:3045

    Article  CAS  Google Scholar 

  • Monteil-Rivera F, Brouwer EB, Masset S, Deslandes Y, Dumonceau J (2000) Combination of X-ray photoelectron and solid-state 13C nuclear magnetic resonance spectroscopy in the structural characterisation of humic acids. Anal Chim Acta 424:243–255

    Article  CAS  Google Scholar 

  • Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T (2001) Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere 45:865–873

    Article  CAS  Google Scholar 

  • Papageorgiou A, Papadakis A, Voutsa (2016) Fate or natural organic matter at a full-scale drinking water treatment plant in Greece. Environ Sci Pollut Res 23:1841

    Article  CAS  Google Scholar 

  • Reszat TN, Hendry MJ (2005) Characterizing dissolved organic carbon using asymmetrical flow field-flow fractionation with on-line UV and DOC detection. Anal Chem 77:4194–4200

    Article  CAS  Google Scholar 

  • Revchuk AD, Suffet IH (2009) Ultrafiltration separation of aquatic natural organic matter: chemical probes for quality assurance. Water Res 43:3685–3692

    Article  CAS  Google Scholar 

  • Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Res 636:178–242

    Article  CAS  Google Scholar 

  • Rodríguez FJ et al. (2011a) Characterization of aquatic humic substances. Water Environ Jour 25:163–170

    Article  Google Scholar 

  • Rodríguez FJ et al. (2011b) Effects of ozonation on natural organic matter reactivity in adsorption and biodegradation processes—a case study: the Úzquiza reservoir water. Ozone Sci Eng 33:185–193

    Article  Google Scholar 

  • Rodríguez FJ, Schlenger P, García-Valverde M (2014a) A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances. Sci Total Environ 476-477:718–730

    Article  Google Scholar 

  • Rodríguez FJ, Schlenger P, García-Valverde M (2014b) A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part II: evaluation of structural changes following ozonation. Sci Total Environ 476-477:731–742

    Article  Google Scholar 

  • Rodríguez FJ, Schlenger P, García-Valverde M (2016) Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and 1H NMR techniques. Sci Total Environ 541:623–637

    Article  Google Scholar 

  • Schäfer AI, Mauch R, Waite TD, Fane AG (2002) Charge effects in the fractionation of natural organics using ultrafiltration. Environ Sci Technol 36:2572–2580

    Article  Google Scholar 

  • Song J, Huang W, Peng P, Xiao B, Ma Y (2010) Humic acid molecular weight estimation by high-performance size-exclusion chromatography with ultraviolet absorbance detection and refractive index detection. Soil Chem 74:2013–2020

    CAS  Google Scholar 

  • Summers RS et al. (1998) Activated carbon adsorption of humic substances. II. Size exclusion and electrostatic interactions. J Coll Interface Sci:122–382

  • Thurman EM, Malcolm RL (1981) Preparative isolation of aquatic humic substances. Environ Sci Technol 15:463

    Article  CAS  Google Scholar 

  • Uyguner CS, Bekbolet M, Swietlik J (2007) Natural organic matter: definitions and characterization. In: Nikolau A et al. (eds) Advances in control of disinfection by-products, vol Chapter 5.1. Nova Science Publishers, pp. pp 1–pp25

  • Vasyukova E, Proft R, Jousten J, Slavik I, Uhl W (2013) Removal of natural organic matter and trihalomethane formation potential in a full-scale drinking water treatment plant. Water Sci Technol 13:1099–1108

    CAS  Google Scholar 

  • Von Sonntag C, Von Gunten U (2012) Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing, London

    Google Scholar 

  • Wei Q, Wang D, Wei Q, Qiao C, Shi B, Tang H (2008) Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China. Environ Monit Assess 141:347–357

    Article  CAS  Google Scholar 

  • Xi W, Rong W, Fane AG, Fook-Sin W (2004) Influence of ionic composition on NOM size and removal by ultrafiltration. Water Sci Technol 4:197–204

    CAS  Google Scholar 

  • Yuan W, Zydney AL (2000) Humic acid fouling during ultrafiltration. Environ Sci Technol 34:5043–5050

    Article  CAS  Google Scholar 

  • Yu CH, Wu CH, Lin CH, Hsiao CH, Lin CF (2008) Hydrophobicity and molecular weight of humic substances on ultrafiltration fouling and resistance. Sep Pur Technol 64:206–212

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu JD, Fan XJ, Li HB (2006) Molecular size distribution of dissolved organic matter in water or the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. J Hazard Mater B 134:60–66

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu JD, Li HB, Li XY, Leung KMY (2009) Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment plant in southern China. Jour Hazard Mat 172:1093–1099

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Rodríguez.

Additional information

Responsible editor: Philippe Garriques

Electronic supplementary material

Fig. S1

(DOCX 18 kb)

Fig. S2

(DOCX 18 kb)

Fig. S3

(DOCX 18 kb)

Fig. S4

(DOCX 18 kb)

Table S1

(DOCX 16 kb)

Table S2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, F.J., García-Valverde, M. Influence of preozonation on the adsorptivity of humic substances onto activated carbon. Environ Sci Pollut Res 23, 21980–21988 (2016). https://doi.org/10.1007/s11356-016-7414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7414-6

Keywords

Navigation