Skip to main content
Log in

Biofilter for generation of concentrated sulphuric acid from H2S

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biofilters are used for the conversion of odorous hydrogen sulphide to odourless sulphate in wastewater treatment plants under the right conditions of moisture and pH. One of the consequences of maintaining the suitable pH and moisture content is the production of large volumes of weakly acidic leachate. This paper presents a biofilter with a maximum H2S elimination capacity of 16.3 g m−3 h−1 and removal efficiency greater than 95 % which produces small volumes (1 mL of solution L−1 of reactor day−1) of sulphuric acid with a concentration greater than 5.5 M after 150 days of continuous operation. The concentrated sulphuric acid was produced by intermittently trickling a minimum amount of nutrient solution down the upflow biofilter which created a moisture and pH gradient within the biofilter resulting in an environment at the top for the bacterial conversion of H2S, while sulphuric acid was accumulated at the base. Genetic diversity profiling of samples taken from different sections of the biofilter confirms that the upper sections of the biofilter had the best environment for the bacteria to convert H2S to sulphate. The formation of concentrated sulphuric acid presents an opportunity for the recovery of sulphur from the waste stream as a usable product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdehagh N, Namini MT, Heydarian SM, Bonakdarpour B, Zare D (2011) Performance of a biotrickling filter employing thiobacillus thioparus immobilized on polyurethane foam for hydrogen sulfide removal. Iran J Environ Health 8:245–254

    CAS  Google Scholar 

  • Aroca G, Urrutia H, Nunez D, Oyarzun P, Arancibia A, Guerrero K (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10:514–520. doi:10.2225/vol10-issue4-fulltext-6

    Article  Google Scholar 

  • Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631. doi:10.1016/S0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  • Bachmann RT, Johnson AC, Edyvean RGJ (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–237. doi:10.1016/j.ibiod.2013.09.011

    Article  CAS  Google Scholar 

  • Ben Jaber M, Couvert A, Amrane A, Rouxel F, Le Cloirec P, Dumont E (2016) Biofiltration of high concentration of H2S in waste air under extreme acidic conditions. New Biotechnol 33:136–143. doi:10.1016/j.nbt.2015.09.008

    Article  CAS  Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63. doi:10.1016/S0734-9750(00)00058-6

    Article  CAS  Google Scholar 

  • Carrera-Chapela F, Donoso-Bravo A, Souto JA, Ruiz-Filippi G (2014) Modeling the odor generation in WWTP: an integrated approach review. Water Air Soil Poll 225 doi: Artn 1932. Doi 10.1007/S11270-014-1932-Y

  • Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S (2011) Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem 46:344–352. doi:10.1016/j.procbio.2010.09.007

    Article  CAS  Google Scholar 

  • Chen YQ, Fan ZD, Ma LX, Yin J, Luo M, Cai WF (2014) Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam. Saudi J Biol Sci 21:450–456. doi:10.1016/j.sjbs.2014.05.008

    Article  CAS  Google Scholar 

  • Chung YC, Huang CP, Tseng CP (2001) Biological elimination of H2S and NH3 from wastegases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere 43:1043–1050. doi:10.1016/S0045-6535(00)00211-3

    Article  CAS  Google Scholar 

  • Churchill P, Elmer D (1999) Hydrogen sulfide odor control in wastewater collection systems. J N Engl Water Environ Assoc 33:57–63

    Google Scholar 

  • Converse BM, Schroeder ED, Iranpour R, Cox HHJ, Deshusses MA (2003) Odor and volatile organic compound removal from wastewater treatment plant headworks ventilation air using a biofilter. Water Environ Res 75:444–454. doi:10.2175/106143003x141240

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36, doi:10.1016/0167-7012(85)90005-3

  • Dumont E, Andres Y, Le Cloirec P, Gaudin F (2008) Evaluation of a new packing material for H2S removed by biofiltration. Biochem Eng J 42:120–127. doi:10.1016/j.bej.2008.06.012

    Article  CAS  Google Scholar 

  • Dumont E, Ayala Guzman LM, Rodríguez Susa MS, Andrès Y (2012) H2S biofiltration using expanded schist as packing material: performance evaluation and packed-bed tortuosity assessment. J Chem Technol Biotechnol 87:725–731. doi:10.1002/jctb.3713

    Article  CAS  Google Scholar 

  • Elias A, Barona A, Arreguy A, Rios J, Aranguiz I, Penas J (2002) Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochem 37:813–820. doi:10.1016/S0032-9592(01)00287-4

    Article  CAS  Google Scholar 

  • Feng J, Zhai M, Liu Q, Sun J, Guo J (2011) Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China. Ecotoxicol Environ Saf 74:2252–2259. doi:10.1016/j.ecoenv.2011.08.001

    Article  CAS  Google Scholar 

  • Gabriel D, Deshusses MA (2003) Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds. Environ Prog 22:111–118. doi:10.1002/Ep.670220213

    Article  CAS  Google Scholar 

  • Gonzalez-Sanchez A, Revah S, Deshusses MA (2008) Alkaline biofiltration of H2S odors. Environ Sci Technol 42:7398–7404. doi:10.1021/es800437f

    Article  CAS  Google Scholar 

  • Gostelow P, Parsons SA, Stuetz RM (2001) Odour measurements for sewage treatment works. Water Res 35:579–597. doi:10.1016/S0043-1354(00)00313-4

    Article  CAS  Google Scholar 

  • Guidotti TL (2010) Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol 29:569–581. doi:10.1177/1091581810384882

    Article  CAS  Google Scholar 

  • Henshaw PF, Bewtra JK, Biswas N (1997) Extraction of elemental sulfur from an aqueous suspension for analysis by high-performance liquid chromatography. Anal Chem 69:3119–3123. doi:10.1021/ac961149p

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995) Treatment of H2S-containing gases—a review of microbiological alternatives. Enzym Microb Technol 17:2–10. doi:10.1016/0141-0229(94)00080-B

    Article  CAS  Google Scholar 

  • Jiang W, Zhu W, Li H, Wang X, Yin S, Chang Y, Li H (2015) Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds. Fuel 140:590–596, doi:10.1016/j.fuel.2014.09.083

  • Jover J, Ramirez M, Rodriguez I, Gomez JM, Cantero D (2012) Strategies for pH control in a biofilter packed with sugarcane bagasse for hydrogen sulfide removal. J Environ Sci Health A 47:990–996. doi:10.1080/10934529.2012.667308

    Article  CAS  Google Scholar 

  • Jung I-G, Park O-H, Woo H-J, Park C-H (2005) Recovery of trichloroethylene removal efficiency through short-term toluene feeding in a biofilter enriched withPseudomonas putida F1. Biotechnol Bioprocess Eng 10:34–39. doi:10.1007/BF02931180

    Article  CAS  Google Scholar 

  • Kennes C, Veiga M (2002) Inert filter media for the biofiltration of waste gases—characteristics and biomass control. Rev Environ Sci Biotechnol 1:201–214. doi:10.1023/A:1021240500817

    Article  CAS  Google Scholar 

  • Kim JH, Rene ER, Park HS (2008) Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter. Bioresour Technol 99:583–588. doi:10.1016/j.biortech.2006.12.028

    Article  CAS  Google Scholar 

  • Lebrero R, Gondim AC, Perez R, Garcia-Encina PA, Munoz R (2014) Comparative assessment of a biofilter, a biotrickling filter and a hollow fiber membrane bioreactor for odor treatment in wastewater treatment plants. Water Res 49:339–350. doi:10.1016/j.watres.2013.09.055

    Article  CAS  Google Scholar 

  • Lebrero R, Rodriguez E, Martin M, Garcia-Encina PA, Munoz R (2010) H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: a comparative study. Water Res 44:3905–3914. doi:10.1016/j.watres.2010.05.008

    Article  CAS  Google Scholar 

  • Lors C, Chehade MH, Damidot D (2009) pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration. Int Biodeterior Biodegrad 63:880–883. doi:10.1016/j.ibiod.2009.06.012

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2005) Manual for soil analysis: monitoring and assessing soil bioremediation, vol 5, Book, Whole. Springer, New York;Berlin

    Google Scholar 

  • McNevin D, Barford J (2000) Biofiltration as an odour abatement strategy. Biochem Eng J 5:231–242. doi:10.1016/S1369-703x(00)00064-4

    Article  CAS  Google Scholar 

  • Meshram P, Purohit BK, Sinha MK, Sahu SK, Pandey BD (2015) Demineralization of low grade coal—a review. Renew Sust Energ Rev 41:745–761, doi:10.1016/j.rser.2014.08.072

  • Moghanloo GMM, Fatehifar E, Saedy S, Aghaeifar Z, Abbasnezhad H (2010) Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor. Bioresour Technol 101:8330–8335. doi:10.1016/j.biortech.2010.05.093

    Article  CAS  Google Scholar 

  • Mudliar S et al (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manag 91:1039–1054. doi:10.1016/j.jenvman.2010.01.006

    Article  CAS  Google Scholar 

  • Oyarzun P, Arancibia F, Canales C, Aroca GE (2003) Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem 39:165–170. doi:10.1016/S0032-9592(03)00050-5

    Article  CAS  Google Scholar 

  • Park J, Evans EA, Ellis TG (2011) Development of a biofilter with tire-derived rubber particle media for hydrogen sulfide odor removal. Water Air Soil Pollut 215:145–153. doi:10.1007/s11270-010-0466-1

    Article  CAS  Google Scholar 

  • Perry R, Chilton C (1973) Chemical Engineers’ Handbook: 3-64. In. McGraw-Hill, New York

  • Rabbani K, Charles W, Cord-Ruwisch R, Ho G (2015) Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review. Rev Environ Sci Biotechnol 14:523–534

    Article  CAS  Google Scholar 

  • Rabbani KA, Charles W, Kayaalp A, Cord-Ruwisch R, Ho G (2016) Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochem Eng J 107:1–10. doi:10.1016/j.bej.2015.11.018

    Article  CAS  Google Scholar 

  • Ramirez-Saenz D, Zarate-Segura PB, Guerrero-Barajas C, Garcia-Pena EI (2009) H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. J Hazard Mater 163:1272–1281. doi:10.1016/j.jhazmat.2008.07.129

    Article  CAS  Google Scholar 

  • Rice EW, Bridgewater L (2012) Standard methods for the examination of water and wastewater. American Public Health Association. ISBN 0875530133, 9780875530130, p 4500E

  • Romero Hernandez AC, Rodríguez Susa MS, Andrès Y, Dumont E (2013) Steady- and transient-state H2S biofiltration using expanded schist as packing material. New Biotechnol 30:210

    Article  CAS  Google Scholar 

  • Roshani B, Torkian A, Aslani H, Dehghanzadeh R (2012) Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide. Bioresour Technol 109:26–30. doi:10.1016/j.biortech.2012.01.016

    Article  CAS  Google Scholar 

  • Shareefdeen Z, Herner B, Webb D, Wilson S (2003a) Hydrogen sulfide (H2S) removal in synthetic media biofilters. Environ Prog 22:207–213. doi:10.1002/ep.670220319

    Article  CAS  Google Scholar 

  • Shareefdeen Z, Herner B, Webb D, Wilson S (2003b) Hydrogen sulfide (H2S) removal synthetic media biofiters. Environ Prog 22:207–213. doi:10.1002/Ep.670220319

    Article  CAS  Google Scholar 

  • Shareefdeen Z, Singh A (2005) Biotechnology for odor and air pollution control. Springer. doi: 10.1007/b138434

  • Shu CH, Sun TH, Zhang HB, Jia JP, Lou ZY (2014) A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride. Fuel 121:72–78. doi:10.1016/j.fuel.2013.12.037

    Article  CAS  Google Scholar 

  • Smith GM, Mantius E (1978) Concentration of sulfuric-acid. Chem Eng Prog 74:78–83

    CAS  Google Scholar 

  • Solcia RB, Ramirez M, Fernandez M, Cantero D, Bevilaqua D (2014) Hydrogen sulphide removal from air by biotrickling filter using open-pore polyurethane foam as a carrier. Biochem Eng J 84:1–8. doi:10.1016/j.bej.2013.12.019

    Article  CAS  Google Scholar 

  • Stanley WBM, Muller CO (2002) Choosing an odor control technology—effectiveness and cost considerations. Proc Water Environ Fed 2002:259–276. doi:10.2175/193864702785140023

    Article  Google Scholar 

  • Vitzthum von Eckstaedt S, Ho G, Charles W, Cord-Ruwisch R (2013) Design and development of a novel biofilter. In: Proceeding of the 5th IWA Odour and Air Emissions Conference Jointly Held With 10th Conference on Biofiltration for Air Pollution Control, 4 - 7 March, San Francisco, CA, USA. doi:10.13140/2.1.2827.1368

  • Vogel AI, Mendham J (2000) Vogel’s textbook of quantitative chemical analysis, Book, Whole. Prentice Hall, Harlow

    Google Scholar 

  • Wang H, Dalla Lana IG, Chuang KT (2003) Thermodynamics and stoichiometry of reactions between hydrogen sulfide and concentrated sulfuric acid. Can J Chem Eng 81:80–85

    Article  CAS  Google Scholar 

  • Yang YH, Allen ER (1994) Biofiltration control of hydrogen-sulfide.1. Design and operational parameters. J Air Waste Manage Assoc 44:863–868

    Article  CAS  Google Scholar 

  • Zhang M, Lawlor PG, Hu Z, Zhan X (2013) Nutrient removal from separated pig manure digestate liquid using hybrid biofilters. Environ Technol 34:645–647. doi:10.1080/09593330.2012.710406

    Article  CAS  Google Scholar 

  • Zhou Z, Liu Z (2007) Concentrating dilute sulfuric acid by spray evaporator. Chem Eng Process 46:1310–1316. doi:10.1016/j.cep.2006.10.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Australian Research Council (ARC) and Water Corporation of Western Australia for their financial support of this research and Dr. Lucy Skillman for her assistance in with interpreting the data obtained from the Australian Genome Research Facility (AGRF) at the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Rabbani.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbani, K.A., Charles, W., Kayaalp, A. et al. Biofilter for generation of concentrated sulphuric acid from H2S. Environ Sci Pollut Res 23, 16781–16789 (2016). https://doi.org/10.1007/s11356-016-6858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6858-z

Keywords

Navigation