Skip to main content
Log in

Methylparaben removal using heterogeneous photocatalysis: effect of operational parameters and mineralization/biodegradability studies

  • AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Methylparaben (MePB) is an organic compound employed mainly in the manufacture of different personal care products. However, it has been recently listed as a potential endocrine disrupter chemical. Therefore, the main objective of this work was to evaluate the degradation of MePB in aqueous solutions using heterogeneous photocatalysis with TiO2 and hydrogen peroxide. In this way, effects of pH and the initial concentrations of catalyst, H2O2, and pollutant on treatment were analyzed. A face centered, central composite design was used for determination of the influence of each parameter in the process and the conditions under which the pollutant suffers the highest rates of degradation were selected. In general, results indicate that combination TiO2/H2O2/light irradiation leads to ∼90 % of substrate removal after 30 min of reaction and that hydroxyl free radicals are the main specie responsible for organic matter elimination. Finally, in terms of mineralization and biodegradability, experimental results indicated that part of the organic matter was transformed into CO2 and water and the photo-treatment promoted an increase in samples biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affam AC, Chaudhuri M (2013) Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. J Environ Manage 130:160–5. doi:10.1016/j.jenvman.2013.08.058

    Article  CAS  Google Scholar 

  • Baran W, Adamek E, Makowski A (2008) The influence of selected parameters on the photocatalytic degradation of azo-dyes in the presence of TiO2 aqueous suspension. Chem Eng J 145:242–248. doi:10.1016/j.cej.2008.04.021

    Article  CAS  Google Scholar 

  • Barndõk H, Hermosilla D, Han C et al (2016) Degradation of 1,4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles. Appl Catal B Environ 180:44–52. doi:10.1016/j.apcatb.2015.06.015

    Article  Google Scholar 

  • Błędzka D, Gmurek M, Gryglik M et al (2010) Photodegradation and advanced oxidation of endocrine disruptors in aqueous solutions. Catal Today 151:125–130. doi:10.1016/j.cattod.2010.03.040

    Article  Google Scholar 

  • Błędzka D, Gromadzińska J, Wąsowicz W (2014) Parabens. From environmental studies to human health. Environ Int 67:27–42. doi:10.1016/j.envint.2014.02.007

    Article  Google Scholar 

  • Boberg J, Taxvig C, Christiansen S, Hass U (2010) Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol 30:301–12. doi:10.1016/j.reprotox.2010.03.011

    Article  CAS  Google Scholar 

  • Chen Y, Yang S, Wang K, Lou L (2005) Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J Photochem Photobiol A Chem 172:47–54. doi:10.1016/j.jphotochem.2004.11.006

    Article  CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D et al (2015) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598. doi:10.1016/j.cej.2015.09.001

    Article  Google Scholar 

  • Chu W, Choy WK, So TY (2007) The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. J Hazard Mater 141:86–91. doi:10.1016/j.jhazmat.2006.06.093

    Article  CAS  Google Scholar 

  • Dimitrakopoulou D, Rethemiotaki I, Frontistis Z et al (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manage 98:168–74. doi:10.1016/j.jenvman.2012.01.010

    Article  CAS  Google Scholar 

  • Feng X, Chen Y, Fang Y et al (2014) Photodegradation of parabens by Fe(III)-citrate complexes at circumneutral pH: matrix effect and reaction mechanism. Sci Total Environ 472:130–6. doi:10.1016/j.scitotenv.2013.11.005

    Article  CAS  Google Scholar 

  • Fontmorin J-M, Huguet S, Fourcade F et al (2012) Electrochemical oxidation of 2,4-Dichlorophenoxyacetic acid: analysis of by-products and improvement of the biodegradability. Chem Eng J 195–196:208–217. doi:10.1016/j.cej.2012.04.058

    Article  Google Scholar 

  • Giraldo AL, Peñuela GA, Torres-Palma RA et al (2010) Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res 44:5158–67. doi:10.1016/j.watres.2010.05.011

    Article  CAS  Google Scholar 

  • Gmurek M, Rossi AF, Martins RC et al (2015) Photodegradation of single and mixture of parabens—Kinetic, by-products identification and cost-efficiency analysis. Chem Eng J 276:303–314. doi:10.1016/j.cej.2015.04.093

    Article  CAS  Google Scholar 

  • Hájková R, Solich P, Dvořák J, Šı́cha J (2003) Simultaneous determination of methylparaben, propylparaben, hydrocortisone acetate and its degradation products in a topical cream by RP-HPLC. J Pharm Biomed Anal 32:921–927. doi:10.1016/S0731-7085(03)00193-6

    Article  Google Scholar 

  • Haman C, Dauchy X, Rosin C, Munoz J-F (2015) Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res 68:1–11. doi:10.1016/j.watres.2014.09.030

    Article  CAS  Google Scholar 

  • Li D, Zhu Q, Han C et al (2015) Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads. J Hazard Mater 285:398–408. doi:10.1016/j.jhazmat.2014.12.024

    Article  CAS  Google Scholar 

  • Lin Y, Ferronato C, Deng N et al (2009) Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Catal B Environ 88:32–41. doi:10.1016/j.apcatb.2008.09.026

    Article  CAS  Google Scholar 

  • Lin Y, Ferronato C, Deng N, Chovelon J-M (2011) Study of benzylparaben photocatalytic degradation by TiO2. Appl Catal B Environ 104:353–360. doi:10.1016/j.apcatb.2011.03.006

    Article  CAS  Google Scholar 

  • Liu T, Li Y, Zhao X et al (2014) Ethylparaben affects lifespan, fecundity, and the expression levels of ERR, EcR and YPR in Drosophila melanogaster. J Insect Physiol 71:1–7. doi:10.1016/j.jinsphys.2014.09.008

    Article  CAS  Google Scholar 

  • Lopez-Alvarez B, Torres-Palma RA, Peñuela G (2011) Solar photocatalitycal treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products. J Hazard Mater 191:196–203. doi:10.1016/j.jhazmat.2011.04.060

    Article  CAS  Google Scholar 

  • Miranda-García N, Suárez S, Sánchez B et al (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B Environ 103:294–301. doi:10.1016/j.apcatb.2011.01.030

    Article  Google Scholar 

  • Moctezuma E, Leyva E, Aguilar CA et al (2012) Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism. J Hazard Mater 243:130–8. doi:10.1016/j.jhazmat.2012.10.010

    Article  CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2006) Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process. Dye Pigment 68:133–142. doi:10.1016/j.dyepig.2005.01.004

    Article  CAS  Google Scholar 

  • Naik KM, Nandibewoor ST (2014) Electroanalytical method for the determination of methylparaben. Sensors Actuators A Phys 212:127–132. doi:10.1016/j.sna.2014.03.033

    Article  CAS  Google Scholar 

  • Pabari RM, Ramtoola Z (2012) Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets. Int J Pharm 430:18–25. doi:10.1016/j.ijpharm.2012.03.021

    Article  CAS  Google Scholar 

  • Pinho LX, Azevedo J, Brito  et al (2015) Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin. Chem Eng J 268:144–152. doi:10.1016/j.cej.2014.12.111

    Article  CAS  Google Scholar 

  • Prakash Maran J, Manikandan S, Vigna Nivetha C, Dinesh R (2013) Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab J Chem. doi: 10.1016/j.arabjc.2013.02.007

  • Santiago DE, Doña-Rodríguez JM, Araña J et al (2013) Optimization of the degradation of imazalil by photocatalysis: comparison between commercial and lab-made photocatalysts. Appl Catal B Environ 138–139:391–400. doi:10.1016/j.apcatb.2013.03.024

    Article  Google Scholar 

  • Sasi S, Rayaroth MP, Devadasan D et al (2015) Influence of inorganic ions and selected emerging contaminants on the degradation of Methylparaben: a sonochemical approach. J Hazard Mater 300:202–209. doi:10.1016/j.jhazmat.2015.06.072

    Article  CAS  Google Scholar 

  • Sojic D V., Anderluh VB, Orcic DZ, Abramovic BF (2009) Photodegradation of clopyralid in TiO2 suspensions Identification of intermediates and reaction pathways. 168:94–101. doi: 10.1016/j.jhazmat.2009.01.134

  • Soni MG, Carabin IG, Burdock GA (2005) Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol 43:985–1015. doi:10.1016/j.fct.2005.01.020

    Article  CAS  Google Scholar 

  • Standard methods for the examination of water and wastewater, 22nd ed. American Public Health Association, Washington, DC (2012).

  • Velegraki T, Hapeshi E, Fatta-Kassinos D, Poulios I (2015) Solar-induced heterogeneous photocatalytic degradation of methyl-paraben. Appl Catal B Environ 178:2–11. doi:10.1016/j.apcatb.2014.11.022

    Article  CAS  Google Scholar 

  • Zúñiga-Benítez H, Aristizábal-Ciro C, Peñuela GA (2016) Photodegradation of the endocrine-disrupting chemicals benzophenone-3 and methylparaben using Fenton reagent: optimization of factors and mineralization/biodegradability studies. J Taiwan Inst Chem Eng 59:380–388. doi:10.1016/j.jtice.2015.09.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank COLCIENCIAS for Mr. Zúñiga-Benítez scholarship and the “Fondo Sostenibilidad 2015–2016” of the University of Antioquia Vice-rectory for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Zúñiga-Benítez.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zúñiga-Benítez, H., Peñuela, G.A. Methylparaben removal using heterogeneous photocatalysis: effect of operational parameters and mineralization/biodegradability studies. Environ Sci Pollut Res 24, 6022–6030 (2017). https://doi.org/10.1007/s11356-016-6468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6468-9

Keywords

Navigation