Skip to main content

Advertisement

Log in

Fate of ivermectin in the terrestrial and aquatic environment: mobility, degradation, and toxicity towards Daphnia similis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ivermectin (IVM) is a broad-spectrum antiparasitic drug that is regularly employed in veterinary medicine. In this work, the sorption and desorption of IVM in two Brazilian soils (N1-sand and S2-clay) as well as its leaching capacity, dissipation under aerobic conditions, and degradation in aqueous solution by photocatalysis with TiO2 in suspension were evaluated. The kinetic sorption curves of IVM were adjusted to a pseudo-second-order model. The sorption and desorption data were well fitted with the Freundlich isotherms in the log form (r > 0.96). The Freundlich sorption coefficient (K ads F ) and the Freundlich desorption coefficient (K des F ) were 77.7 and 120 μg1−1/n(cm3)1/ng−1 and 74.5 and 138 μg1−1/n(cm3)1/ng−1, for soils N1 and S2, respectively. A greater leaching capacity of IVM was observed for the sandy soil N1 than for the clay soil S2. Under aerobic conditions, the dissipation (DT50) at 19.3 °C was 15.5 days (soil N1) and 11.5 days (soil S2). Photocatalysis with UVC and TiO2 in suspension resulted in the degradation of 98 % of IVM (500 μg L−1) in water in 600 s. The toxicity (Daphnia similis) of the solutions submitted to the photocatalytic process was completely eliminated after 10 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abellán MN, Bayarri B, Gimenez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B-Environ 74:233–241. doi:10.1016/j.apcatb.2007.02.017

    Article  Google Scholar 

  • Beynon SA (2012) Potential environmental consequences of administration of anthelmintics to sheep. Vet Parasitol 189:113–124

    Article  CAS  Google Scholar 

  • Bloom RA, Matheson JC (1993) Environmental assessment of avermectins by the United-States-Food-and-Drug-Administration. Vet Parasitol 48:281–294. doi:10.1016/0304-4017(93)90163-H

    Article  CAS  Google Scholar 

  • Boonstra H, Reichman EP, van den Brink PJ (2011) Effects of the veterinary pharmaceutical ivermectin in indoor aquatic microcosms. Arch Environ Con Tox 60:77–89. doi:10.1007/s00244-010-9526-1

    Article  CAS  Google Scholar 

  • Boxall ABA (2012) OECD 2012. New and emerging water pollutants arising from agriculture. http://www.oecd.org/tad/sustainable-agriculture/49848768.pdf. Accessed 13 July 2015.

  • Bull DL et al (1984) Fate of avermectin B1a in soil and plants. J Agr Food Chem 32:94–102. doi:10.1021/jf00121a025

    Article  CAS  Google Scholar 

  • Celestina TV, Kolar L, Gobec I, Kuzner J, Flajs VC, Pogacnik M, Erzen NK (2010) Factors influencing dissipation of avermectins in sheep faeces. Ecotox Environ Safe 73:18–23. doi:10.1016/j.ecoenv.2009.08.008

    Article  Google Scholar 

  • Chu W, Choy WK, So TY (2007) The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. J Hazard Mater 141:86–91. doi:10.1016/j.jhazmat.2006.06.093

    Article  CAS  Google Scholar 

  • Dal Bosco SM, Barbosa IM, Candello FP, Maniero MG, Rath S, Guimaraes JR (2011) Degradation of ivermectin by Fenton and photo-Fenton and toxicity test using Daphnia similis. J Adv Oxid Technol 14:292–301

    CAS  Google Scholar 

  • Davies IM, Gillibrand PA, McHenery JG, Rae GH (1998) Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture 163:29–46

    Article  CAS  Google Scholar 

  • Doretto KM, Peruchi LM, Rath S (2014) Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci Total Environ 476:406–414. doi:10.1016/j.scitotenv.2014.01.024

    Article  Google Scholar 

  • Garric J et al (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69:903–910. doi:10.1016/j.chemosphere.2007.05.070

    Article  CAS  Google Scholar 

  • Gruber VF, Halley BA, Hwang SC, Ku CC (1990) Mobility of avermectin B-1a in soil. J Agr Food Chem 38:886–890. doi:10.1021/Jf00093a063

    Article  CAS  Google Scholar 

  • Halley BA, Jacob TA, Lu AYH (1989) The environmental-impact of the use of ivermectin. Environmental-Effects and Fate Chemosphere 18:1543–1563. doi:10.1016/0045-6535(89)90045-3

    CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719. doi:10.1021/Es60130a004

    Article  CAS  Google Scholar 

  • Horvat AJM et al (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trac-Trend Anal Chem 31:61–84

    Article  CAS  Google Scholar 

  • IAC (2001) Instituto Agronômico, Análise Química para Avaliação da Fertilidade de Solos Tropicais.

  • Iglesias LE et al (2006) Environmental impact of ivermectin excreted by cattle treated in autumn on dung fauna and degradation of faeces on pasture. Parasitol Res 100:93–102. doi:10.1007/s00436-006-0240-x

    Article  CAS  Google Scholar 

  • Jensen J, Krogh PH, Sverdrup LE (2003) Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50:437–443. doi:10.1016/S0045-6535(02)00336-3

    Article  Google Scholar 

  • Kim SC, Carlson K (2007) Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Anal Bioanal Chem 387:1301–1315. doi:10.1007/s00216-006-0613-0

    Article  CAS  Google Scholar 

  • Kolar L, Erzen NK, Hogerwerf L, van Gestel CAM (2008) Toxicity of abamectin and doramectin to soil invertebrates. Environ Pollut 151:182–189. doi:10.1016/j.envpol.2007.02.011

    Article  CAS  Google Scholar 

  • Krogh KA, Bjorklund E, Loeffler D, Fink G, Halling-Sorensen B, Ternes TA (2008a) Development of an analytical method to determine avermectins in water, sediments and soils using liquid chromatography-tandem mass spectrometry. J Chromatogr A;1211:60–69 doi: 10.1016/j.chroma.2008.09.081.

  • Krogh KA, Soeborg T, Brodin B, Halling-Sorensen B (2008b) Sorption and mobility of ivermectin in different soils. J Environ Qual; 37:2202–2211 doi:10.2134/Jeq2007.0592.

  • Krogh KA, Jensen GG, Schneider MK, Fenner K, Halling-Sorensen B (2009) Analysis of the dissipation kinetics of ivermectin at different temperatures and in four different soils. Chemosphere 75:1097–1104. doi:10.1016/j.chemosphere.2009.01.015

    Article  CAS  Google Scholar 

  • Kunz A, Peralta-Zamora P, de Moraes SG, Duran N (2002) New tendencies on textile effluent treatment. Quim Nov. 25:78–82

  • Leal RMP, Alleoni LRF, Tornisielo VL, Regitano JB (2013) Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere 92:979–985

    Article  CAS  Google Scholar 

  • Liebig M, Fernandez AA, Blübaum-Graonau E, Boxall A, Brinke M, Carbonell-Martin G (2010) Environmental risk assessment of ivermectin: a case study integrated environmental. Assessment and Management 6:20. doi:10.1002/ieam.96

    Google Scholar 

  • Litskas VD, Karamanlis XN, Batzias GC, Kamarianos AP (2011) Sorption of the antiparasitic drug eprinomectin in three soils. Chemosphere 82:193–198. doi:10.1016/j.chemosphere.2010.10.024

    Article  CAS  Google Scholar 

  • Litskas VD, Karamanlis XN, Batzias GC, Tsiouris SE (2013) Are the parasiticidal avermectins resistant to dissipation in the environment? The case of eprinomectin. Environ Int 60:48–55. doi:10.1016/j.envint.2013.07.017

    Article  CAS  Google Scholar 

  • Mushtaq M, Feely WF, Syintsakos LR, Wislocki PG (1996) Immobility of emamectin benzoate in soils. J Agr Food Chem 44:940–944. doi:10.1021/Jf950474v

    Article  CAS  Google Scholar 

  • Nessel RJ, Wallace DH, Wehner TA, Tait WE, Gomez L (1989) Environmental fate of ivermectin in a cattle feedlot. Chemosphere 18:1531–1541

    Article  CAS  Google Scholar 

  • Nogueira RFP, Trovo AG, da Silva MRA, Villa RD, de Oliveira MC (2007) Fundaments and environmental applications of Fenton and photo-Fenton processes. Quim Nov. 30:400–408

  • OECD (2000) Test No. 106: Adsorption—Desorption using a batch equilibrium method. OECD Publishing, Paris

  • OECD (2004) OECD Guidelines for the testing of chemicals. Leaching in soil columns.

  • Omura S (2008) Ivermectin: 25 years and still going strong. Int J Antimicrob Ag 31:91–98. doi:10.1016/j.ijantimicag.2007.08.023

    Article  CAS  Google Scholar 

  • Omura S, Crump A (2004) The life and times of ivermectin—a success story. Nat Rev Microbiol 2:984–989. doi:10.1038/Nrmicro1048

    Article  CAS  Google Scholar 

  • Omura S, Crump A (2014) Ivermectin: panacea for resource-poor communities? Trends Parasitol 30:445–455

    Article  Google Scholar 

  • Oppel J, Broll G, Loffler D, Meller M, Rombke J, Ternes T (2004) Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Sci Total Environ 328:265–273. doi:10.1016/j.scitotenv.2004.02.004

    Article  CAS  Google Scholar 

  • Rombke J et al (2010) Effects of the parasiticide ivermectin on the structure and function of dung and soil invertebrate communities in the field (Madrid, Spain). Appl Soil Ecol 45:284–292. doi:10.1016/j.apsoil.2010.05.004

    Article  Google Scholar 

  • Schweitzer N, Fink G, Ternes TA, Duis K (2010) Effects of ivermectin-spiked cattle dung on a water-sediment system with the aquatic invertebrates Daphnia magna and Chironomus riparius. Aquat Toxicol 97:304–313. doi:10.1016/j.aquatox.2009.12.017

    Article  CAS  Google Scholar 

  • Shoop WL, Mrozik H, Fisher MH (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59:139–156. doi:10.1016/0304-4017(94)00743-V

    Article  CAS  Google Scholar 

  • SINDAN (2014) Compêndio de Produtos Veterinários. http://www.cpvs.com.br/cpvs/prodpesquisa.aspx?codigo=2416. Accessed 22/11/2014.

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2009/17470-4, 2012/01757-0, and 2013/09543-7) and CNPq (476501/2013-0). The authors thank FAPESP for research grants awarded to M.G. Maniero (FAPESP 2013/07817-2), the Agronomic Institute of Campinas for soil characterization, and EMBRAPA for soil sample supply and granulometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Rath.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Responsible editor: Laura McConnell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, S., Pereira, L.A., Bosco, S.M.D. et al. Fate of ivermectin in the terrestrial and aquatic environment: mobility, degradation, and toxicity towards Daphnia similis . Environ Sci Pollut Res 23, 5654–5666 (2016). https://doi.org/10.1007/s11356-015-5787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5787-6

Keywords

Navigation