Skip to main content

Advertisement

Log in

Biosorption and degradation of decabromodiphenyl ether by Brevibacillus brevis and the influence of decabromodiphenyl ether on cellular metabolic responses

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

There is global concern about the effects of decabromodiphenyl ether (BDE209) on environmental and public health. The molecular properties, biosorption, degradation, accumulation, and cellular metabolic effects of BDE209 were investigated in this study to identify the mechanisms involved in the aerobic biodegradation of BDE209. BDE209 is initially absorbed by wall teichoic acid and N-acetylglucosamine side chains in peptidoglycan, and then, BDE209 is transported and debrominated through three pathways, giving tri-, hepta-, octa-, and nona-bromodiphenyl ethers. The C–C bond energies decrease as the number of bromine atoms on the diphenyl decreases. Polybrominated diphenyl ethers (PBDEs) inhibit protein expression or accelerate protein degradation and increase membrane permeability and the release of Cl, Na+, NH4 +, arabinose, proteins, acetic acid, and oxalic acid. However, PBDEs increase the amounts of K+, Mg2+, PO4 3−, SO4 2−, and NO3 assimilated. The biosorption, degradation, accumulation, and removal efficiencies when Brevibacillus brevis (1 g L−1) was exposed to BDE209 (0.5 mg L−1) for 7 days were 7.4, 69.5, 16.3, and 94.6 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Brar SK, Verma M, Tyagi RD, Surampalli RY, Barnabé S, Valéro JR (2007) Bacillus thuringiensis proteases: production and role in growth, sporulation and synergism. Process Biochem 42:773–790

    Article  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Sign 13:1763–1811

    Article  CAS  Google Scholar 

  • Chen DJ, Xu D, Li MS, He J, Gong YH, Wu DD, Sun M, Yu ZN (2012) Proteomic analysis of Bacillus thuringiensis ΔphaC mutant BMB171/PHB −1 reveals that the PHB synthetic pathway warrants normal carbon metabolism. J Proteomics 75:5176–5188

    Article  CAS  Google Scholar 

  • Chua EM, Shimeta J, Nugegoda D, Morrison PD, Clarke BO (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ Sci Technol 48:8127–8134

    Article  CAS  Google Scholar 

  • Dingemans MML, Ramakers GMJ, Gardoni F, van-Kleef GDM, Bergman A, DiLuca M, van-den-Berg M, Westerink RHS, Vijverberg HPM (2007) Neonatal exposure to brominated flame retardants BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Persp 115:865–870

    Article  CAS  Google Scholar 

  • Guardia MJL, Hale RC, Harvey E, Mainor TM, Ciparis S (2012) In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the bivalve (Corbicula fluminea) and gastropod (Elimia proxima). Environ Sci Technol 46:5798–5805

    Article  Google Scholar 

  • He J, Robrock KR, Alvarez-Cohen L (2006) Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol 40:4429–4434

    Article  CAS  Google Scholar 

  • Johansson AK, Sellstrom U, Lindberg P, Bignert A, Cynthia ADW (2011) Temporal trends of polybrominated diphenyl ethers and hexabromocyclododecane in Swedish peregrine falcon (Falco peregrinus) eggs. Environ Int 37:678–686

    Article  CAS  Google Scholar 

  • Kim MN, Yoon MG (2010) Isolation of strains degrading poly(vinyl alcohol) at high temperatures and their biodegradation ability. Polym Degrad Stab 95:89–93

    Article  CAS  Google Scholar 

  • Kim SJ, Chang J, Singh M (2014) Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta 1848:350–362

    Article  Google Scholar 

  • Lee LK, Ding C, Yang KL, He JZ (2011) Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of Dehalococcoides and Desulfovibrio species. Environ Sci Technol 45:8475–8482

    Article  CAS  Google Scholar 

  • Lim S, Marcellin E, Jacob S, Nielsen LK (2015) Global dynamics of Escherichia coli phosphoproteome in central carbon metabolism under changing culture conditions. J Proteomics 126:24–33

    Article  CAS  Google Scholar 

  • Lohmann R, Klanova J, Kukucka P, Yonis S, Bollinger K (2013) Concentrations, fluxes, and residence time of PBDEs across the tropical Atlantic Ocean. Environ Sci Technol 47:13967–13975

    Article  CAS  Google Scholar 

  • Madia F, Giordano G, Fattori V, Vitalone A, Branchi I, Capone F, Costa LG (2004) Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett 154:11–21

    Article  CAS  Google Scholar 

  • Matias PM, Pereira IAC, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Bio 89:292–329

    Article  CAS  Google Scholar 

  • McKernan MA, Rattner BA, Hatfield JS, Hale RC, Ottinger MA (2010) Absorption and biotransformation of polybrominated diphenyl ethers DE-71 and DE-79 in chicken (Gallus gallus), mallard (Anas platyrhynchos), American kestrel (Falco sparverius) and black-crowned night-heron (Nycticorax nycticorax) eggs. Chemosphere 79:100–109

    Article  CAS  Google Scholar 

  • Qiu MD, Chen XJ, Deng DY, Guo J, Sun GP, Mai BX, Xu MY (2012) Effects of electron donors on anaerobic microbial debromination of polybrominated diphenyl ethers (PBDEs). Biodegradation 23:351–361

    Article  CAS  Google Scholar 

  • Rayne S, Ikonomou MG, Whale MD (2003) Anaerobic microbial and photochemical degradation of 4,4′-dibromodiphenyl ether. Water Res 37:551–560

    Article  CAS  Google Scholar 

  • Robrock KR, Korytar P, Alvarez-Cohen L (2008) Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environ Sci Technol 42:2845–2852

    Article  CAS  Google Scholar 

  • Romani A (2007) Regulation of magnesium homeostasis and transport in mammalian cells. Arch Biochem Biophys 458:90–102

    Article  CAS  Google Scholar 

  • Shi GY, Yin H, Ye JS, Peng H, Li J, Luo CL (2013) Effect of cadmium ion on biodegradation of decabromodiphenyl ether (BDE-209) by Pseudomonas aeruginosa. J Hazard Mater 263:711–717

    Article  CAS  Google Scholar 

  • Sulimma L, Bullach A, Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2013) Enantioselective degradation of the chiral fungicides metalaxyl and furalaxyl by Brevibacillus brevis. Chirality 25:336–340

    Article  CAS  Google Scholar 

  • Tang SY, Bai JQ, Yin H, Ye JS, Peng H, Liu ZH, Dang Z (2014) Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. Chemosphere 114:255–261

    Article  CAS  Google Scholar 

  • Tian M, Chen SJ, Wang J, Luo Y, Luo XJ, Mai BX (2012) Plant uptake of atmospheric brominated flame retardants at an E-waste site in southern China. Environ Sci Technol 46:2708–2714

    Article  CAS  Google Scholar 

  • Tokarz JA, Ahn MY, Leng J, Filley TR, Nies L (2008) Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Environ Sci Technol 42:1157–1164

    Article  CAS  Google Scholar 

  • Upadhyay SK, Sasidhar YU (2012) Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. J Comput Aid Mol Des 26:847–864

    Article  CAS  Google Scholar 

  • Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, Pronk JT, van-Maris AJA (2010) Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 12:537–551

    Article  CAS  Google Scholar 

  • Xu GY, Wang JB (2014) Biodegradation of decabromodiphenyl ether (BDE-209) by white-rot fungus Phlebia lindtneri. Chemosphere 110:70–77

    Article  CAS  Google Scholar 

  • Ye JS, Yin H, Peng H, Bai JQ, Xie DP, Wang LL (2013a) Biosorption and biodegradation of triphenyltin by Brevibacillus brevis. Bioresource Technol 129:236–241

    Article  CAS  Google Scholar 

  • Ye JS, Yin H, Xie DP, Peng H, Huang J, Liang WY (2013b) Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a]pyrene. Chem Eng J 219:1–9

    Article  CAS  Google Scholar 

  • Yen JH, Liao WC, Chen WC, Wang YS (2009) Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment. J Hazard Mater 165:518–524

    Article  CAS  Google Scholar 

  • Yu LH, Luo XJ, Wu JP, Liu LY, Song J, Sun QH, Zhang XL, Chen D, Mai BX (2011) Biomagnification of higher brominated PBDE congeners in an urban terrestrial food web in north China based on field observation of prey deliveries. Environ Sci Technol 45:5125–5131

    Article  CAS  Google Scholar 

  • Zhao Q, Ovchinnikova K, Chai BH, Yoo H, Magula J, Pollack GH (2009) Role of proton gradients in the mechanism of osmosis. J Phys Chem B 113:10708–10714

    Article  CAS  Google Scholar 

  • Zorbas YG, Kakuris KK, Federenko YF, Deogenov VA (2010) Utilization of magnesium during hypokinesia and magnesium supplementation in healthy subjects. Nutrition 26:1134–1138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Nos. 21377047 and 21577049), Science and Technology Project of Guangdong Province (No. 2014A020216013), and the University Foundation of Education Ministry of China (No. 21615459) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinshao Ye or Yan Long.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.23 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tang, L., Wang, R. et al. Biosorption and degradation of decabromodiphenyl ether by Brevibacillus brevis and the influence of decabromodiphenyl ether on cellular metabolic responses. Environ Sci Pollut Res 23, 5166–5178 (2016). https://doi.org/10.1007/s11356-015-5762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5762-2

Keywords