Skip to main content

Advertisement

Log in

Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments

  • DECAPAGE Project: Hydrocarbon degradation in coastal sediments*
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamek Z, Marsalek B (2013) Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquacult Int 21:1–17

    Article  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  Google Scholar 

  • Alzaga R, Montuori P, Ortiz L, Bayona JM, Albaigés J (2004) Fast solid-phase extraction-gas chromatography-mass spectrometry procedure for oil fingerprinting: application to the prestige oil spill. J Chromatogr 1025:133–138

    Article  CAS  Google Scholar 

  • Bertics VJ, Ziebis W (2009) Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. ISME J 3:1269–1285

    Article  CAS  Google Scholar 

  • Bordenave S, Fourçans A, Blanchard S, Goni-Urriza MS, Caumette P, Duran R (2004a) Structure and functional analyses of bacterial communities changes in microbial mats following petroleum exposure. Ophelia 58:195–203

    Article  Google Scholar 

  • Bordenave S, Jézéquel R, Fourçans A, Budzinski H, Merlin FX, Fourel T, Goñi-Urriza M, Guyoneaud R, Grimaud R, Caumette P, Duran R (2004b) Degradation of the “Erika” oil. Aquat Living Resour 17:261–267

    Article  CAS  Google Scholar 

  • Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Christensen M, Banta GT, Andersen O (2002) Effects of the polychaetes Nereis diversicolor and Arenicola marina on the fate and distribution of pyrene in sediments. Mar Ecol Prog Ser 237:159–172

    Article  CAS  Google Scholar 

  • Chronopoulou PM, Fahy A, Coulon F, Païssé S, Goñi Urriza M, Acuña Alvarez L, McKew BA, Lawson T, Timmis KN, Duran R, Underwood GJC, McGenity TJ (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15:242–252

    Article  CAS  Google Scholar 

  • Coulon F, Chronopoulou P-M, Fahy A, Sandrine P, Goñi-Urriza M, Peperzak L, Acuña Alvarez L, McKew BA, Brussaard CPD, Underwood GJC, Timmis KN, Duran R, McGenity TJ (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648

    Article  CAS  Google Scholar 

  • Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era. Front Microbiol 5:39

    Google Scholar 

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: Software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10

  • Cuny P, Miralles G, Cornet-Barthaux V, Acquaviva M, Stora G, Grossi V, Gilbert F (2007) Influence of bioturbation by the polychaete Nereis diversicolor on the structure of bacterial communities in oil contaminated coastal sediments. Mar Pollut Bull 54:452–459

    Article  CAS  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  CAS  Google Scholar 

  • Duport E, Gilbert F, Poggiale JC, Dedieu K, Rabouille C, Stora G (2007) Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar Coast Shelf Sci 72:522–533

    Article  Google Scholar 

  • Duran R, Goňi-Urriza MS (2010) Impact of pollution on microbial mats. In: Timmis K (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg, pp 2339-2348. doi:10.1007/978-3-540-77587-4_170

  • Duran R, Ranchou-Peyruse M, Menuet V, Monperrus M, Bareille G, Goñi MS, Salvado JC, Amouroux D, Guyoneaud R, Donard OFX, Caumette P (2008) Mercury methylation by a microbial community from sediments of the Adour estuary (Bay of Biscay, France). Environ Pollut 156:951–958

    Article  CAS  Google Scholar 

  • Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comp Biol 8

  • Gilbert F, Stora G, Bertrand JC (1996) In situ bioturbation and hydrocarbon fate in an experimental contaminated Mediterranean coastal ecosystem. Chemosphere 33:1449–1458

    Article  CAS  Google Scholar 

  • Goni-Urriza M, Cravo-Laureau C, Duran R (2013) Microbial bioremediation of aquatic environments. In: Férard J, Blaise C (eds) Encyclopedia of aquatic ecotoxicology, vol 2. Springer, Berlin, pp 709–720

    Chapter  Google Scholar 

  • Grossi V, Massias D, Stora G, Bertrand JC (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48:947–954

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Hii YS, Law AT, Shazili NAM, Abdul-Rashid MK, Lee CW (2009) Biodegradation of Tapis blended crude oil in marine sediment by a consortium of symbiotic bacteria. Int Biodeterior Biodegrad 63:142–150

    Article  CAS  Google Scholar 

  • Hirschler-Réa A, Cravo-Laureau C, Casalot L, Matheron R (2012) Methanogenic octadecene degradation by syntrophic enrichment culture from brackish sediments. Curr Microbiol 65:561–567

    Article  Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp strain BPC1 in a benzo a pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833

    Article  CAS  Google Scholar 

  • Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66:143–157

    Article  CAS  Google Scholar 

  • Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Louati H, Ben Said O, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013) The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure. Chemosphere 93:2535–2546

  • Majdi N, Bardon L, Gilbert F (2014) Quantification of sediment reworking by the Asiatic clam Corbicula fluminea Muller, 1774. Hydrobiologia 732:85–92

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54

    Article  CAS  Google Scholar 

  • Michotey V, Guasco S, Boeuf D, Morezzi N, Durieux B, Charpy L, Bonin P (2012) Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters. Mar Pollut Bull 65:525–537

    Article  CAS  Google Scholar 

  • Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) vegan: Community ecology package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan

  • Paerl HW, Dyble J, Twomey L, Pinckney JL, Nelson J, Kerkhof L (2002) Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems. Antonie Van Leeuwenhoek 81:487–507

    Article  CAS  Google Scholar 

  • Païssé S, Coulon F, Goñi Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  Google Scholar 

  • Pischedda L, Militon C, Gilbert F, Cuny P (2011) Characterization of specificity of bacterial community structure within the burrow environment of the marine polychaete Hediste (Nereis) diversicolor. Res Microbiol 162:1033–1042

    Article  Google Scholar 

  • Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17-Alpha(H),21-beta(H)-hopane as a conserved internal marker for estimating the biodegradation of crude-oil. Environ Sci Technol 28:142–145

    Article  CAS  Google Scholar 

  • Queiros AM, Birchenough SNR, Bremner J, Godbold JA, Parker RE, Romero-Ramirez A, Reiss H, Solan M, Somerfield PJ, Van Colen C, Van Hoey G, Widdicombe S (2013) A bioturbation classification of European marine infaunal invertebrates. Ecol Evol 3:3958–3985

    Article  Google Scholar 

  • Ranchou-Peyruse A, Moppert X, Hourcade E, Hernandez-Raquet G, Caumette P, Guyoneaud R (2004) Characterization of brackish anaerobic bacteria involved in hydrocarbon degradation: a combination of molecular and culture-based approaches. Ophelia 58:255–262

    Article  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  Google Scholar 

  • Soltwedel T, Lansard B, Gilbert F, Hasemann C, Bell E, Sablotny B, Eagle M, Kershaw P, Rabouille C (2008) An “Integrated Sediment Disturber” (ISD) to study the impact of repeated physical perturbations on sediment geochemistry and the small benthic biota. Limnol Oceanogr Methods 6:307–318

    Article  CAS  Google Scholar 

  • Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin FX, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS ONE 8

  • Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119

    Article  CAS  Google Scholar 

  • Timmis KN, McGenity TJ, Meer JR, Lorenzo V (2010) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Book  Google Scholar 

  • Vitte I, Duran R, Jezequel R, Caumette P, Cravo-Laureau C (2011) Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge. Environ Sci Pollut Res 18:1022–1032

    Article  CAS  Google Scholar 

  • Vitte I, Duran R, Hernandez-Raquet G, Mounier J, Jézéquel R, Bellet V, Balaguer P, Caumette P, Cravo-Laureau C (2013) Dynamics of metabolically active bacterial communities involved in PAH and toxicity elimination from oil-contaminated sludge during anoxic/oxic oscillations. Appl Microbiol Biotechnol 97:4199–4211

    Article  CAS  Google Scholar 

  • Weinstein JN, Myers TG, Oconnor PM, Friend SH, Fornace AJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, vanOsdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  CAS  Google Scholar 

  • Widdicombe S, Austen MC (2001) The interaction between physical disturbance and organic enrichment: an important element in structuring benthic communities. Limnol Oceanogr 46:1720–1733

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the French programme ANR DECAPAGE (project ANR-CESA-2011-006 01). We would like to thank all partners of the DECAPAGE project and MELODY group for their useful discussions. We acknowledge the Regional Platform for Environmental Microbiology PREMICE supported by the Aquitaine Regional Government Council (France) and the urban community of Pau-Pyrénées (France). We thank the Direction Générale de l’Armement (Edgar) and the Aquitaine Regional Government Council (France) for financial support to JA. We acknowledge B. Bouyssiere, S. Guasco, M.S. Goñi-Urriza and J. Gury for technical assistance during sampling campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Duran.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, R., Bonin, P., Jezequel, R. et al. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments. Environ Sci Pollut Res 22, 15248–15259 (2015). https://doi.org/10.1007/s11356-015-4373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4373-2

Keywords

Navigation