Skip to main content
Log in

Organic additives enhance Fenton treatment of nitrobenzene at near-neutral pH

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nitrobenzene (NB) is considered a toxic and potential carcinogen. Continuous contamination has resulted in an urgent need for remediation. Fenton reagent provides an advanced oxidation process that is capable of remediating recalcitrant nitroaromatic compounds, such as NB. However, one drawback of Fenton chemistry is that the reaction requires acidic pH to prevent precipitation of iron. Our studies have investigated Fenton conversion of NB at near-neutral pH with several organic additives: β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HPCD), carboxymethyl-β-cyclodextrin (CMCD), and polyethylene glycol (molecular weight (MW) = 200, 400, and 600) for developing a process for treating NB-contaminated waters. The main factors influencing NB conversion, such as iron concentration, hydroxyl radicals (·OH) scavengers, and kinds or concentration of organic additives, were examined. Meanwhile, the reactive mechanisms and kinetics were investigated for Fenton conversion of NB. The results show that organic additives for Fenton process should be a good alternative for the advanced treatment of NB at near-neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bhatkhande DS, Kamble SP, Sawant SB (2005) Photocatalytic and photochemical conversion of nitrobenzene using artificial ultraviolet light. Chem Eng J 102:283–290

    Article  Google Scholar 

  • Bruhn C, Lenke H, Knackmuss HJ (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol 53:208–210

    CAS  Google Scholar 

  • Cao JS, Ding YB, Huang LM (2002) Solubilization of substituted indole compounds by β-cyclodextrin and carboxymethyl-β-cyclodextrin in water. Environ Chem 19(1):42–47

    Google Scholar 

  • Carlos L, Fabbri D, Capparelli AL (2008) Intermediate distributions and primary yields of phenolic products in nitrobenzene conversion by Fenton’s reagent. Chemosphere 72:952–958

    Article  CAS  Google Scholar 

  • Chamarro E, Marco A, Esplugas S (2001) Use of Fenton reagent to improve organic chemical biodegradability. Water Res 35:1047–1051

    Article  CAS  Google Scholar 

  • ElShafei GMS, Yehia FZ, Dimitryb OIH, Badawib AM, Eshaq G (2010) Degradation of nitrobenzene at near-neutral pH using Fe2+-glutamate complex as a homogeneous Fenton catalyst. Appl Catal, B 99:242–247

  • Fan C, Tsui L, Liao M (2011) Parathion conversion and its intermediate formation by Fenton process in neutral environment. Chemosphere 82:229–236

    Article  CAS  Google Scholar 

  • Fan Z, Diao CH, Guo MJ (2007) An investigation of the inclusion complex of β-cyclodextrin with p-nitrobenzoic acid in the solid state. Carbohydr Res 342:2500–2503

    Article  CAS  Google Scholar 

  • Fan Z, Diao CH, Yu M (2006) An investigation of the inclusion complex of β-cyclodextrin with 8-nitro-quinoline in the solid state. Supramol Chem 18:7–11

    Article  CAS  Google Scholar 

  • Gilbert BC, Lindsay SJR, Taylor P (2000) Free-radical reactions of carbohydrate moieties in macromolecular structures. EPR evidence for the importance of steric and stereoelectronic effects and for the influence of inclusion in cyclodextrins. Perkin 2:2001–2007

    Article  Google Scholar 

  • Hess TF, Renn TS, Watts RJ (2003) Studies on nitroaromatic compound conversion in modified Fenton reactions by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Analyst (Cambridge UK) 128:156–160

    Article  CAS  Google Scholar 

  • Jarand CW, Chen K, Cole RB (2009) In conversion products of TNT after Fenton oxidation. Am Chem Soc 45:224–228

    Google Scholar 

  • Jing TS, Xu J (2004) Quantitative structure-activity relationships for toxicity of nitrobenzenes to Escherichia coli and Bacillus subtilis. J Jilin Univ (Sci Ed) 42:130–134

    CAS  Google Scholar 

  • Kazarian SG, Chan KLA (2003) “Chemical photography” of drug release. Macromolecules 6:9866–9872

    Article  Google Scholar 

  • Li ZM, Shea PJ, Comfort SD (1997) Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries. Environ Eng Sci 14:55–66

    Article  Google Scholar 

  • Liang C, Bruell CJ, Marley MC (2004) Persulfate oxidation for in situ remediation ofTCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55:1213–1223

    Article  CAS  Google Scholar 

  • Li ZM, Shea PJ, Comfort SD (1998) Nitrotoluene destruction by UV-catalyzed Fenton oxidation. Chemosphere 36:1849–1865

    Article  CAS  Google Scholar 

  • Lindsey ME, Xu G, Lu J (2003) Enhanced Fenton conversion of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307:215–229

    Article  CAS  Google Scholar 

  • Lindsey ME, Tarr MA (2000a) Inhibited hydroxyl radical conversion of aromatic hydrocarbons in the presence of dissolved fulvic acid. Water Res 34:2385–2389

    Article  CAS  Google Scholar 

  • Lindsey ME, Tarr MA (2000b) Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41:409–417

    Article  CAS  Google Scholar 

  • Liou MJ, Lu MC (2007) Catalytic conversion of nitroaromatic explosives with Fenton’s reagent. J Mol Catal A Chem 277:155–163

    Article  CAS  Google Scholar 

  • Lipczynska KE, Kochany J (2008) Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere 73:745–750

    Article  Google Scholar 

  • Liu XB, Lu HY, Huang WM (2012) Electrochemical conversion of nitrobenzene. Curr Org Chem 6:1967–1971

    Article  Google Scholar 

  • Lu GH (2004) Quantitative structure-toxicity relationship for acute toxicity of nitrobenzenes to Daphnia carinata. J Hehai Univ 32:372–375

    Google Scholar 

  • Majumder PS, Gupta SK (2003) Hybrid reactor for priority pollutant NB removal. Water Res 37:4331–4336

    Article  CAS  Google Scholar 

  • Mantha R, Taylor KE, Biswas N (2001) A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater. Environ Sci Technol 35:3231–3236

    Article  CAS  Google Scholar 

  • Matta R, Hanna K, Chiron S (2007) Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Sci Total Environ 385:242–251

    Article  CAS  Google Scholar 

  • Méndez-Arriaga F, Esplugas S, Giménez J (2010) Conversion of the emerging contaminant ibuprofen in water by photo-Fenton. Water Res 44:589–595

    Article  Google Scholar 

  • Moncayo-Lasso A, Rincon AG, Pulgarin C, Benitez N (2012) Significant decrease of THMs generated during chlorination of river water by previous photo-Fenton treatment at near-neutral pH. J Photochem Photobiol A 229:46–52

    Article  CAS  Google Scholar 

  • Mu Y, Yu HQ, Zheng JC (2004) Reductive conversion of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere 54:789–794

    Article  CAS  Google Scholar 

  • Parsons S (2004) Advanced oxidation processes for water and wastewater treatment, IWA workshop. Tunbridge Wells, UK

  • Przado D, Kafarski P, Steininger M (2007) Studies on conversion of polychlorinated biphenyls by means of Fenton’s reagent. Pol J Environ Stud 16:881–887

    CAS  Google Scholar 

  • Quaranta A, Zhang Y, Wang Y (2008) Single and double reduction of C60 in 2:1 γ-cyclodextrin/[60]fullerene inclusion complexes by cyclodextrin radicals. Chem Phys 354:174–179

    Article  CAS  Google Scholar 

  • Sheremata TW, Hawari J (2000) Cyclodextrins for desorption and solubilization of 2,4,6-trinitrotoluene and its metabolites from soil. Environ Sci Technol 34:3462–3468

    Article  CAS  Google Scholar 

  • Teel AL, Watts RJ (2002) Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater 94:179–189

    Article  CAS  Google Scholar 

  • Veignie E, Rafin C, Landy D, Fourmentin S, Surpateanu G (2009) Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene. J Hazard Mater 168:1296–1301

    Article  CAS  Google Scholar 

  • Wang ZP, Liu ZZH, Yu F (2013) Siderophore-modified Fenton-like system for the conversion of propranolol in aqueous solutions at near-neutral pH values. Chem Eng J 229:177–182

    Article  CAS  Google Scholar 

  • Xu JB, Jing TS (2002) QSAR studies on the toxicity of nitrobenzenes to population growth of Tereahymena pyriformis. Chem Res 18:258–261

    CAS  Google Scholar 

  • Xu W, Xu CH (2014) Lanzhou govt gives all clear for tap water after contamination. http://www.chinadaily.com.cn/china/2014-04/15/content_17433529.htm. Accessed 22 June 2014.

  • Yardin G, Chiron S (2006) Photo-Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin. Chemosphere 62:1395–1402

    Article  CAS  Google Scholar 

  • Yoon J, Cho S, Cho Y (1998) The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Sci Technol 38:209–214

    Article  CAS  Google Scholar 

  • Zhang SJ, Jiang H, Li MJ (2007) Kinetics and mechanisms of radiolytic conversion of nitrobenzene in aqueous solutions. Environ Sci Technol 41:1977–1982

    Article  CAS  Google Scholar 

  • Zhao L, Sun Z, Ma J (2009) Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution. Environ Sci Technol 43:4157–4163

    Article  CAS  Google Scholar 

  • Zheng W, Tarr MA (2004) Evidence for the existence of ternary complexes of iron, cyclodextrin, and hydrophobic guests in aqueous solution. J Phys Chem B 108:10172–10176

    Article  CAS  Google Scholar 

  • Zheng W, Tarr MA (2006) Assessment of ternary iron-cyclodextrin-2-naphthol complexes using NMR and fluorescence spectroscopies. Spectrochim Acta Part A 65A:1098–1103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial supports from the National Major Specific Program of Science and Technology on Controlling and Administering of Water’s Pollution (2009ZX07212-001-04), the National Natural Science Foundation for the scientific research ability training of undergraduate students (J1103307), and the Sustentation Program of Science and Technology of China (2006BRD01B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Li.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Zhou, L., Gao, W. et al. Organic additives enhance Fenton treatment of nitrobenzene at near-neutral pH. Environ Sci Pollut Res 22, 7082–7092 (2015). https://doi.org/10.1007/s11356-014-3809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3809-4

Keywords

Navigation