Skip to main content
Log in

Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy–SDBS composite film

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pentachlorophenol (PCP) is a persistent pollutant and a suspected human carcinogen. It can be found in the air, water, and soil and enters the environment through evaporation from treated wood surfaces, industrial spills, and disposal at uncontrolled hazardous waste sites. Ecotoxicity of PCP necessitates the development of rapid and reliable remediation techniques. Electrocatalytic hydrogenolysis (ECH) has been proven as a promising method for detoxification of halogenated wastes, due to its rapid reaction rate, low apparatus cost, mild reaction conditions, and absence of secondary contaminants. Challenge for the application of ECH is to prepare a Pd-coated cathode with high stability, high catalytic activity, and low Pd loading level. In this work, Pd/polypyrrole–sodium dodecyl benzene sulfonate/meshed Ti (Pd/PPy–SDBS/Ti) electrode was prepared and was characterized by cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectrometry. Electrochemically reductive dechlorination of PCP on the Pd/PPy–SDBS/Ti electrode in aqueous solution was investigated. Pd microparticles were uniformly dispersed on PPy–SDBS film which was previously electrodeposited on the meshed Ti supporting electrode. The loading of Pd on the electrode was 0.72 mg cm−2. Electrocatalytic dechlorination of PCP was performed in a two-compartment cell separated by cation-exchange membrane. The PCP removal on the Pd/PPy–SDBS/Ti electrode could reach 100 % within 70 min with dechlorination current 3 mA when PCP initial concentration was 10 mg L−1 and initial pH was 2.4. Conversion of PCP on the Pd/PPy–SDBS/Ti electrode followed pseudo-first-order kinetics, and the apparent activation energy was 13.0 kJ mol−1. The removal of PCP still kept 100 % after 70 min dechlorination when the Pd/PPy–SDBS/Ti cathode was reused ten times. The electrode exhibited promising dechlorination potential with high electrocatalytic activity, good stability, and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersin J, Parkkinen P, Honkala K (2012) Pd-catalyzed hydrodehalogenation of chlorinated olefins: theoretical insights to the reaction mechanism. J Catal 290:118–125

    Article  CAS  Google Scholar 

  • Cheng H, Scott K, Christensen PA (2003) Electrochemical hydrodehalogenation of chlorinated phenols in aqueous solutions—I. Material aspects. J Electrochem Soc 150:D17–D24

    Article  CAS  Google Scholar 

  • Cheng H, Scott K, Christensen PA (2004) Electrochemical hydrodehalogenation of 2,4-dichlorophenol in paraffin oil and comparison with aqueous systems. J Electroanal Chem 566:131–138

    Article  CAS  Google Scholar 

  • Cheng R, Zhou W, Wang JL, Qi DD, Guo L, Zhang WX, Qian Y (2010) Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J Hazard Mater 180:79–85

    Article  CAS  Google Scholar 

  • Choi KS, McFarland EW, Stucky GD (2003) Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly. Adv Mater 15:2018–2021

    Article  CAS  Google Scholar 

  • Chu D, Xu M, Lu J, Zheng P, Qin G, Yuan X (2008) Electrocatalytic reduction of diethyl oximinomalonate at a Ti/nanoporous TiO2 electrode. Electrochem Commun 10:350–353

    Article  CAS  Google Scholar 

  • Codognoto L, Machado S, Avaca L (2005) Electrochemical determination and removal of pentachlorophenol at diamond electrodes. Port Electrochim Acta 23:225–246

    Article  CAS  Google Scholar 

  • Cui CY, Quan X, Chen S, Zhao HM (2005) Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers. Sep Purif Technol 47:73–79

    Article  CAS  Google Scholar 

  • Cui CY, Quan X, Yu HT, Han YH (2008) Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode. Appl Catal B Environ 80:122–128

    Article  CAS  Google Scholar 

  • Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322:21–39

    Article  CAS  Google Scholar 

  • Dabo P, Cyr A, Laplante F, Jean F, Menard H, Lessard J (2000) Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ Sci Technol 34:1265–1268

    Article  CAS  Google Scholar 

  • Damianovic M, Moraes EM, Zaiat M, Foresti E (2009) Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors. Bioresources Technol 100:4361–4367

    Article  CAS  Google Scholar 

  • Drazevic E, Kosutic K, Fingler S, Drevenkar V (2011) Removal of pesticides from the water and their adsorption on the reverse osmosis membranes of defined porous structure. Desalin Water Treat 30:161–170

    Article  CAS  Google Scholar 

  • Garg SK, Tripathi M, Singh SK, Singh A (2013) Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut R 20:2288–2304

    Article  CAS  Google Scholar 

  • Hernandez-Ferrer J, Anson-Casaos A, Martinez MT (2012) Electrochemical synthesis and characterization of single-walled carbon nanotubes/polypyrrole films on transparent substrates. Electrochim Acta 64:1–9

    Article  CAS  Google Scholar 

  • Huang Y, Yang Q, Ao XL (2008) Bibliometric analysis of pentachlorophenol remediation methods during the period of 1994 to 2005. Scientometrics 77:177–186

    Article  CAS  Google Scholar 

  • Jia HZ, Gu C, Li H, Fan XY, Li SZ, Wang CY (2012) Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. Environ Sci Pollut R 19:3498–3505

    Article  CAS  Google Scholar 

  • Jou CJ (2008) Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. J Hazard Mater 152:699–702

    Article  CAS  Google Scholar 

  • Kaper H, Franke D, Smarsly BM, Faul C (2007) A pyrrole-containing surfactant as a tecton for nanocomposite SiO2 films. Langmuir 23:11273–11280

    Article  CAS  Google Scholar 

  • Kim YH, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34:2014–2017

    Article  CAS  Google Scholar 

  • Lehr IL, Saidman SB (2006) Electrodeposition of polypyrrole on aluminium in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Mater Chem Phys 100:262–267

    Article  CAS  Google Scholar 

  • Li J, Liu H, Cheng X, Chen Q, Xin Y, Ma Z, Xu W, Ma J, Ren N (2013) Preparation and characterization of palladium/polypyrrole/foam nickel electrode for electrocatalytic hydrodechlorination. Chem Eng J 225:489–498

    Article  CAS  Google Scholar 

  • Lorenc-Grabowska E, Gryglewicz G, Machnikowski J (2010) p-Chlorophenol adsorption on activated carbons with basic surface properties. Appl Surf Sci 256:4480–4487

    Article  CAS  Google Scholar 

  • Lou L, Luo L, Cheng G, Wei Y, Mei R, Xun B, Xu X, Hu B, Chen Y (2012) The sorption of pentachlorophenol by aged sediment supplemented with black carbon produced from rice straw and fly ash. Bioresources Technol 112:61–66

    Article  CAS  Google Scholar 

  • Lu N, Li J, Wang XX, Wang TC, Wu Y (2012) Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration. Plasma Chem Plasma P 32:109–121

    Article  CAS  Google Scholar 

  • Mourato A, Correia JP, Siegenthaler H, Abrantes LM (2007) Palladium electrodeposition on polyaniline films. Electrochim Acta 53:664–672

    Article  CAS  Google Scholar 

  • Mun CH, He JZ, Ng WJ (2008) Pentachlorophenol dechlorination by an acidogenic sludge. Water Res 42:3789–3798

    Article  CAS  Google Scholar 

  • Niu J, Bao Y, Li Y, Chai Z (2013) Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes. Chemosphere 11:1571–1577

    Article  Google Scholar 

  • Patel UD, Suresh S (2007) Dechlorination of chlorophenols using magnesium–palladium bimetallic system. J Hazard Mater 147:431–438

    Article  CAS  Google Scholar 

  • Patel UD, Suresh S (2008a) Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interf Sci 319:462–469

    Article  CAS  Google Scholar 

  • Patel UD, Suresh S (2008b) Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Sep Purif Technol 61:115–122

    Article  CAS  Google Scholar 

  • Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

    Article  CAS  Google Scholar 

  • Podlovchenko BI, Andreev VN (2002) Electrocatalysis on polymer-modified electrodes. Russ Chem Rev 71:950–966

    Article  Google Scholar 

  • Potapov VK, Matyuk VM, Baturin AS, Trakhtenberg LI (2008) Adsorption of hydrogen on palladium film nanostructures. Russ J Phy Chem 82:1415–1418

    Article  CAS  Google Scholar 

  • Saidman SB, Vela ME (2005) Electropolymerisation of pyrrole onto aluminium from alkaline solutions containing a surfactant. Thin Solid Films 493:96–103

    Article  CAS  Google Scholar 

  • Shih YH, Chen MY, Su YF (2011) Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles: effects of copper, nickel, and ferric cations. Appl Catal B Environ 105:24–29

    Article  CAS  Google Scholar 

  • Song S, Wang C, Hong FY, He ZQ, Cai QL, Chen JM (2011) Gallium- and iodine-co-doped titanium dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution: role of gallium. Appl Surf Sci 257:3427–3432

    Article  CAS  Google Scholar 

  • Sun ZR, Gao M, Peng YZ, Hu X (2011) Electrochemical dechlorination of 2,4-dichlorophenol in aqueous solution on palladium-loaded meshed titanium electrode. Water Sci Technol 63:199–205

    Article  CAS  Google Scholar 

  • Sun ZR, Wei XF, Hu X, Wang K, Shen HT (2012) Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant. Colloid Surf A 414:314–319

    Article  CAS  Google Scholar 

  • Tamer E, Hamid Z, Aly AM, Ossama ET, Bo M, Benoit G (2006) Sequential UV-biological degradation of chlorophenols. Chemosphere 63:277–284

    Article  CAS  Google Scholar 

  • Vijayan P, Mahendiran C, Suresh C, Shanthi K (2009) Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol. Catal Today 141:220–224

    Article  CAS  Google Scholar 

  • Xia CH, Liu Y, Zhou SW, Yang CY, Liu SJ, Xu J, Yu JB, Chen JP, Liang XM (2009) The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater. J Hazard Mater 169:1029–1033

    Article  CAS  Google Scholar 

  • Xie W, Yuan S, Mao X, Hu W, Liao P, Tong M, Alshawabkeh AN (2013) Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Res 47:3573–3582

    Article  CAS  Google Scholar 

  • Xu YH, Cai QQ, Ma HX, He Y, Zhang H, Ma CA (2013) Optimisation of electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on a roughened silver-palladium cathode. Electrochim Acta 96:90–96

    Article  CAS  Google Scholar 

  • Yang B, Yu G, Huang J (2007) Electrocatalytic hydrodechlorination of 2,4,5-trichlorobiphenyl on a palladium-modified nickel foam cathode. Environ Sci Technol 41:7503–7508

    Article  CAS  Google Scholar 

  • Yuan G, Keane MA (2004) Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/Al2O3: a consideration of HCl/catalyst interactions and solution pH effect. Appl Catal B Environ 52:301–314

    Article  CAS  Google Scholar 

  • Zahran EM, Bhattacharyya D, Bachas LG (2013) Reactivity of Pd/Fe bimetallic nanotubes in dechlorination of coplanar polychlorinated biphenyls. Chemosphere 91:165–171

    Article  CAS  Google Scholar 

  • Zhao Y, Yu HT, Quan X, Chen S, Zhao HM, Zhang YB (2014) Preparation and characterization of vertically columnar boron doped diamond array electrode. Appl Surf Sci 303:419–424

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51278006), Research Fund for the Doctoral Program of Higher Education of China (20111103110007), The Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD20130311), and Doctoral Fund of Innovation of Beijing University of Technology (YB201308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Sun or Xiang Hu.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wei, X., Zhang, H. et al. Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy–SDBS composite film. Environ Sci Pollut Res 22, 3828–3837 (2015). https://doi.org/10.1007/s11356-014-3641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3641-x

Keywords

Navigation