Skip to main content

Advertisement

Log in

Constraints of propylene glycol degradation at low temperatures and saturated flow conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

During snowmelt, the infiltration of large amounts of propylene glycol (PG), the major compound of many aircraft deicing fluids, affects redox processes and poses a contamination risk for the groundwater. To gain a better understanding about the degradation of PG and the associated biogeochemical processes under these conditions, we conducted saturated soil column experiments at 4 °C. During two successive PG pulses, we monitored the effect of the runway deicer formate (FO) and changing redox conditions on PG degradation. Furthermore, we applied first-order and simplified Monod kinetics to describe PG and FO transport. The transport of 50 mg l−1 PG showed three stages of microbial degradation, which were defined as lag phase, aerobic phase, and anaerobic phase. During the second pulse, lag effects diminished due to the already accomplished microbial adaption, and the initial degradation rate of PG increased. Degradation of PG was most efficient during aerobic conditions (aerobic phase), while the subsequent drop of the redox potential down to −300 mV decreased the degradation rate (anaerobic phase). Formate addition decreased the overall degradation of PG by 50 and 15 % during the first and second pulse, illustrating the inhibitory effect of FO on PG degradation. The concurrent increase of Fe(III), organic carbon, and the turbidity in the column effluent after PG and FO application suggest the combined export of Fe adsorbed to fragments of detached biofilm. Neither the first-order nor the simplified Monod model was able to reconstruct the dynamic breakthrough of 50 mg l−1 PG. The breakthrough of 1,000 mg l−1, however, was described reasonably well with first-order kinetics. At low temperature and high water saturation, the application of first-order degradation kinetics seems therefore appropriate to describe the transport of high concentrations of PG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bausmith DS, Neufeld RD (1999) Soil biodegradation of propylene glycol based aircraft deicing fluids. Water Environ Res 71:459–464. doi:10.2175/106143097X121997

    Article  CAS  Google Scholar 

  • Bielefeldt AR, Illangasekare T, Uttecht M, LaPlante R (2002) Biodegradation of propylene glycol and associated hydrodynamic effects in sand. Water Res 36:1707–1714

    Article  CAS  Google Scholar 

  • Bielefeldt AR, Illangasekare T, LaPante R (2004) Bioclogging of sand due to biodegradation of aircraft deicing fluid. J Environ Eng ASCE 130:1147–1153. doi:10.1016/S0043-1354(01)00383-9

    Article  CAS  Google Scholar 

  • Brown DA, Sherriff BL, Sawicki JA, Sparling R (1999) Precipitation of iron minerals by a natural microbial consortium. Geochim Cosmochim Acta 63:2163–2169. doi:10.1016/s0016-7037(99)00188-x

    Article  CAS  Google Scholar 

  • Cancilla DA, Martinez J, Van Aggelen GC (1998) Detection of aircraft deicing/antiicing fluid additives in a perched water monitoring well at an international airport. Environ Sci Technol 32:3834–3835. doi:10.1021/es980489k

    Article  CAS  Google Scholar 

  • Cancilla DA, Baird JC, Geis SW, Corsi SR (2003) Studies of the environmental fate and effect of aircraft deicing fluids: detection of 5-methyl-1H-benzotriazole in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 22:134–140

    Article  CAS  Google Scholar 

  • CCME (2007) Canadian soil quality guidelines for propylene glycol: environmental and human health

  • Chen BY, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R (2000) Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int BiodeteriorBiodegrad 46:11–18. doi:10.1016/s0964-8305(00)00054-8

    CAS  Google Scholar 

  • Cooke AJ, Rowe RK, Rittmann BE, Fleming IR (1999) Modeling biochemically driven mineral precipitation in anaerobic biofilms. Water Sci Technol 39:57–64. doi:10.1016/s0273-1223(99)00150-x

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides. Wiley-VHC, Weinheim

    Book  Google Scholar 

  • Corsi SR, Zitomer DH, Field JA, Cancilla DA (2003) Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff. Environ Sci Technol 37:4031–4037

    Article  CAS  Google Scholar 

  • Corsi SR, Harwell GR, Geis SW, Bergman D (2006) Impacts of aircraft deicer and anti-icer runoff on receiving waters from Dallas/Fort Worth International Airport, Texas, USA. Environ Toxicol Chem 25:2890–2900

    Article  CAS  Google Scholar 

  • Cox JS, Smith DS, Warren LA, Ferris FG (1999) Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ Sci Technol 33:4514–4521. doi:10.1021/es990627l

    Article  CAS  Google Scholar 

  • De Wilde T et al (2009) Characterizing pesticide sorption and degradation in microscale biopurification systems using column displacement experiments. Environ Pollut 157:463–473. doi:10.1016/j.envpol.2008.09.008

    Article  Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257

    CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415

    CAS  Google Scholar 

  • Fontes MPF, Bowen LH, Weed SB (1991) Iron-oxides in selected Brazilian oxisols. 2. Mossbauer studies. Soil Sci Soc Am J 55:1150–1155

    Article  CAS  Google Scholar 

  • French HK, Van der Zee SEATM, Leijnse A (2001) Transport and degradation of propyleneglycol and potassium acetate in the unsaturated zone. J Contam Hydrol 49:23–48. doi:10.1016/S0169-7722(00)00187-X

    Article  CAS  Google Scholar 

  • Gounot AM (1994) Microbial oxidation and reduction of manganese—consequences in groundwater and applications. FEMS Microbiol Rev 14:339–349. doi:10.1111/j.1574-6976.1994.tb00108.x

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellsten P, Nysten T (2003) Migration of alternative de-icers in unsaturated zone of aquifers—in vitro study. Water Sci Technol 48:45–50

    CAS  Google Scholar 

  • Hellsten PP, Kivimaki AL, Miettinen IT, Makinen RP, Salminen JM, Nysten TH (2005) Degradation of potassium formate in the unsaturated zone of a sandy aquifer. J Environ Qual 34:1665–1671. doi:10.2134/jeq2004.0323

    Article  CAS  Google Scholar 

  • Holden PA, Fierer N (2005) Microbial processes in the vadose zone. Vadose Zone J 4:1–21. doi:10.2113/4.1.1

    Article  CAS  Google Scholar 

  • Hunt SM, Werner EM, Huang BC, Hamilton MA, Stewart PS (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70:7418–7425. doi:10.1128/aem.70.12.7418-7425.2004

    Article  CAS  Google Scholar 

  • Jaesche P, Totsche KU, Kogel-Knabner I (2006) Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials. J Contam Hydrol 85:271–286. doi:10.1016/j.jconhyd.2006.02.003

    Article  CAS  Google Scholar 

  • Klecka GM, Carpenter CL, Landenberger BD (1993) Biodegradation of aircraft deicing fluids in soil at low temperatures. Ecotoxicol Environ Saf 25:280–295. doi:10.1006/eesa.1993.1026

    Article  CAS  Google Scholar 

  • Larsen N et al (1993) The Ribosomal Database Project. Nucleic Acids Res 21:3021–3023

    Article  CAS  Google Scholar 

  • Lissner H, Wehrer M, Jartun M, Totsche K (2013) Degradation of deicing chemicals affects the natural redox system in airfield soils Environ Sci Pollut Res Int:1–18 doi:10.1007/s11356-013-2096-9

  • Liu Y, Lam MC, Fang HHP (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–66

    CAS  Google Scholar 

  • Loeppert RH, Inskeep WP (1996) Colorimetric determination of ferrous iron and ferric iron by the 1,10-phenanthroline method. In: Sparks DL (ed) Methods of Soil Analysis. Part 3. Chemical Methods. ASA, Madison, pp 659–661

    Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327. doi:10.1346/ccmn.1958.0070122

    Article  Google Scholar 

  • Nealson K (1983) Microbial oxidation and reduction of manganese and iron. In: Westbroek P, Jong EW (eds) Biomineralization and biological metal accumulation. Springer, Netherlands, pp 459–479. doi:10.1007/978-94-009-7944-4_45

    Chapter  Google Scholar 

  • Peyton BM, Characklis WG (1993) A statistical-analysis of the effect of substrate utilization and shear-stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41:728–735. doi:10.1002/bit.260410707

    Article  CAS  Google Scholar 

  • Pillard DA (1995) Comparative toxicity of formulated glycol deicers and pure ethylene and propylene-glycol to ceriodaphnia-dubia and pimephales-promelas. Environ Toxicol Chem 14:311–315

    Article  CAS  Google Scholar 

  • Revitt DM, Worrall P (2003) Low temperature biodegradation of airport de-icing fluids. Water Sci Technol 48:103–111

    CAS  Google Scholar 

  • Rolfe MD et al (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686–701. doi:10.1128/jb.06112-11

    Article  CAS  Google Scholar 

  • Sawyer LK, Hermanowicz SW (1998) Detachment of biofilm bacteria due to variations in nutrient supply. Water Sci Technol 37:211–214. doi:10.1016/s0273-1223(98)00108-5

    Article  CAS  Google Scholar 

  • Schotanus D, van der Ploeg MJ, van der Zee SEATM (2012) Quantifying heterogeneous transport of a tracer and a degradable contaminant in the field, with snowmelt and irrigation. Hydrol Earth Syst Sci 16:2871–2882

    Article  Google Scholar 

  • Schotanus D, Meeussen JCL, Lissner H, Ploeg MJ, Wehrer M, Totsche KU, Zee SEATM (2013) Transport and degradation of propylene glycol in the vadose zone: model development and sensitivity analysis Environ Sci Pollut Res Int:1–13 doi:10.1007/s11356-013-2033-y

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. J Plant Nutr Soil Sci 105:194–202

    CAS  Google Scholar 

  • Schwertmann U, Carlson L (1994) Aluminum influence on iron-oxides. 17. Unit-cell parameters and aluminum substitution of natural goethites. Soil Sci Soc Am J 58:256–261. doi:10.2136/sssaj1994.03615995005800010039x

    Article  CAS  Google Scholar 

  • Seifert D, Engesgaard P (2012) Sand box experiments with bioclogging of porous media: hydraulic conductivity reductions. J Contam Hydrol 136–137:1–9. doi:10.1016/j.jconhyd.2012.04.007

    Article  Google Scholar 

  • Sharp RR, Cunningham AB, Komlos J, Billmayer J (1999) Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects. Water Sci Technol 39:195–201. doi:10.1016/s0273-1223(99)00168-7

    Article  Google Scholar 

  • Simunek J, van Genuchten MT, Sejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 7:587–600. doi:10.2136/vzj2007.0077

    Article  Google Scholar 

  • Singh B, Gilkes RJ (1992) Properties and distribution of iron-oxides and their association with minor elements in the soils of south-western australia. J Soil Sci 43:77–98. doi:10.1111/j.1365-2389.1992.tb00121.x

    Article  CAS  Google Scholar 

  • SMUL (2014) Einführung in die Muster-Leistungsbeschreibungen. Staatsministerium fuer Umwelt und Landwirtschaft, Saechsisches

    Google Scholar 

  • Staples C, Mihaich E, Carbone J, Woodburn K, Klecka G (2004) A weight of evidence analysis of the chronic ecotoxicity of nonylphenol ethoxylates, nonylphenol ether carboxylates, and nonylphenol. Hum Ecol Risk Assess 10:999–1017

    Article  CAS  Google Scholar 

  • Switzenbaum MS, Veltman S, Mericas D, Wagoner B, Schoenberg T (2001) Best management practices for airport deicing stormwater. Chemosphere 43:1051–1062

    Article  CAS  Google Scholar 

  • Taylor SW, Jaffe PR (1990) Biofilm growth and the related changes in the physical-properties of a porous-medium. 1. Experimental investigation. Water Resour Res 26:2153–2159. doi:10.1029/WR026i009p02153

    Google Scholar 

  • Toscano G et al (2012) Aerobic biodegradation of propylene glycol by soil bacteria. Biodegradation. doi:10.1007/s10532-012-9609-y

    Google Scholar 

  • USEPA (2000) Preliminary data summary on airport deicing operations. EPA 821-R-00-001. Washington, DC

  • Veltman S, Schoenberg T, Switzenbaum MS (1998) Alcohol and acid formation during the anaerobic decomposition of propylene glycol under methanogenic conditions. Biodegradation 9:113–118. doi:10.1023/a:1008352502493

    Article  CAS  Google Scholar 

  • Voroney RP (2007) 2 - THE SOIL HABITAT. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press, San Diego, pp 25–49. doi:10.1016/B978-0-08-047514-1.50006-8

    Chapter  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07

    Article  CAS  Google Scholar 

  • Wehrer M, Jaesche P, Totsche KU (2012) Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions. Environ Pollut 168:96–106. doi:10.1016/j.envpol.2012.04.016

    Article  CAS  Google Scholar 

  • Wehrer M, Lissner H, Bloem E, French H, Totsche K (2013) Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals Environ Sci Pollut Res Int:1–17 doi:10.1007/s11356-013-2252-2

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  • Wejden B, Ovstedal J (2006) Contamination and degradation of de-icing chemicals in the unsaturated and saturated zones at Oslo Airport, Gardermoen, Norway. Urban Groundw Manag Sustain 74:205–218

    Article  Google Scholar 

  • Willetts A (1979) Bacterial metabolism of propane-1,2-diol. Biochim Biophys Acta 588:302–309. doi:10.1016/0304-4165(79)90338-6

    Article  CAS  Google Scholar 

  • Wood BD, Ginn TR, Dawson CN (1995) Effects of microbial metabolic lag in contaminant transport and biodegradation modeling. Water Resour Res 31:553–563. doi:10.1029/94WR02533

    Article  CAS  Google Scholar 

  • Zheng ZP, Aagaard P, Breedveld GD (2002) Intrinsic biodegradation of toluene coupled to the microbial reduction of ferric iron: laboratory column experiments. Environ Geol 42:649–656

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was carried out as part of the SoilCAM project (Soil Contamination; Advanced integrated characterisation and time-lapse Monitoring) financed by the European Commission’s 7th Framework Programme, Grant Agreement 212663. The authors gratefully acknowledge Christine Goetze, Gundula Rudolph, and Kati Pfeifer for laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Lissner.

Additional information

Responsible editor: Leif Kronberg

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 110 kb)

ESM 2

(DOCX 22 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 46 kb)

ESM 5

(DOCX 11 kb)

ESM 6

(DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lissner, H., Wehrer, M., Reinicke, M. et al. Constraints of propylene glycol degradation at low temperatures and saturated flow conditions. Environ Sci Pollut Res 22, 3158–3174 (2015). https://doi.org/10.1007/s11356-014-3506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3506-3

Keywords

Navigation