Skip to main content

Advertisement

Log in

Molecular markers in ambient aerosol in the Mahanadi Riverside Basin of eastern central India during winter

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organic molecular markers are important atmospheric constituents. Their formation and sources are important aspects of the study of urban and rural air quality. We collected PM10 aerosol samples from the Mahanadi Riverside Basin (MRB), a rural part of eastern central India, during the winter of 2011. PM10 aerosols were characterized for molecular markers using ion chromatography. The concentration of PM10 ranged from 208.8 to 588.3 μg m−3 with a mean concentration of 388.9 μg m−3. Total concentration of anhydrosugars, sugar alcohols, primary sugars, and oxalate were found to be 3.25, 5.60, 10.52, and 0.37 μg m−3, respectively, during the study period. Glucose was the most abundant species followed by levoglucosan and mannitol. Significant positive correlation between the molecular markers, anhydrosugars, sugar alcohols, primary sugars, and oxalic acid confirmed that biomass burning, biogenic activity, and re-suspension of soil particles were the main sources of aerosol in the eastern central India study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal S, Aggarwal SG, Okuzawa K, Kawamura K (2010) Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos Chem Phys 10:5839–5858

    CAS  Google Scholar 

  • Alier M, Osto MD, Lin YH, Surratt JD, Tauler R, Grimalt JO, van Drooge BL (2014) On the origin of water-soluble organic tracer compounds in fine aerosols in two cities: the case of Los Angeles and Barcelona. Environ Sci Pollut Res 1–12

  • Amodio M, Andriani E, de Gennaro G, Loiotile AD, Di Gilio A, Placentino MC (2012) An integrated approach to identify the origin of PM10 exceedances. Environ Sci Pollut Res 19:3132–3141

    CAS  Google Scholar 

  • Bauer H, Claeys M, Vermeylen R, Schueller E, Weinke G, Berger A, Puxbaum H (2008) Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos Environ 42:588–593

    CAS  Google Scholar 

  • Bencardino MM, Pirrone NN, Sprovieri FF (2014) Aerosol and ozone observations during six cruise campaigns across the Mediterranean basin: temporal, spatial, and seasonal variability. Environ Sci Pollut Res 21:4044–4062

    CAS  Google Scholar 

  • Bowers RM, McCubbin IB, Hallar AG, Fierer N (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 50:41–49

    CAS  Google Scholar 

  • Bracero OLM, Guyon P, Graham B, Roberts G, Andreae MO, Decesari S, Facchini MC, Fuzzi S, Artaxo P (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res 107:59–15

    Google Scholar 

  • Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Environ Res 26:309–318

    CAS  Google Scholar 

  • Burshtein N, Lang-Yona N, Rudich Y (2011) Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean Atmos. Chem Phys 11:829–839

    CAS  Google Scholar 

  • Carvalho A, Pio C, Santos C (2003) Water-soluble hydroxylated organic compounds in German and Finnish aerosols. Atmos Environ 37:1775–1783

    CAS  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region. India Aerosol Air Qual Res 10:433–445

    CAS  Google Scholar 

  • Chang CH, Liu CC, Tseng PY (2013) Emissions inventory for rice straw open burning in Taiwan based on burned area classification and mapping using formosat-2 satellite imagery. Aerosol Air Qual Res 13:474–487

    CAS  Google Scholar 

  • Chen SJ, Lin TC, Tsai JH, Hsieh LT, Cho JY (2013) Characteristics of indoor aerosols in college laboratories. Aerosol Air Qual Res 13:649–661

    CAS  Google Scholar 

  • Cheng MT, Tsai YI (2000) Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. Sci Total Environ 263:101–114

    CAS  Google Scholar 

  • Chowdhury Z, Le LT, Masud AA, Chang KC, Alauddin M, Hossain M, Zakaria ABM, Hopke PK (2012) Quantification of indoor air pollution from using cookstoves and estimation of its health effects on adult women in northwest Bangladesh. Aerosol Air Qual Res 12:463–475

    CAS  Google Scholar 

  • Das M, Maiti SK, Mukhopadhyay U (2006) Distribution of PM2.5 and PM10–2.5 in PM10 fractions in ambient air due to vehicular pollution in Kolkata megacity. Environ Monit Assess 122:111–123

    CAS  Google Scholar 

  • Deshmukh DK, Deb MK, Tsai YI, Mkoma SL (2010) Atmospheric ionic species in PM2. 5 and PM1 aerosols in the ambient air of eastern central India. J Atmos Chemistry 66:81–100

    CAS  Google Scholar 

  • Deshmukh DK, Deb MK, Hopke PK, Tsai YI (2012) Seasonal characteristics of water-soluble dicarboxylates associated with PM10 in the urban atmosphere of Durg city, India. Aerosol Air Qual Res 12:683–696

    CAS  Google Scholar 

  • Engling G, Lee JJ, Tsai YW, Lung SCC, Chou CCK, Chan CY (2009) Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Sci Technol 43:662–672

    CAS  Google Scholar 

  • Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, Li YS, Lin CY, Lee JJ (2011) Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Souther Asia biomass-burning season. Tellus Ser B Chem Phys Meteorol 63:117–128. doi:10.1111/j.1600-0889.2010.00512.x

    CAS  Google Scholar 

  • Fabbri D, Torri C, Simoneit BRT, Marynowski L, Rushdi AI, Fabiańska MJ (2009) Levoglucosan and other cellulose and lignin markers in emissions from burning of miocene lignites. Atmos Environ 43:2286–2295

    CAS  Google Scholar 

  • Fraser MP, Lakshmanan K (2000) Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ Sci Technol 34:4560–4564. doi:10.1021/es991229l

    CAS  Google Scholar 

  • Fu PQ, Kawamura K (2011) Diurnal variations of polar organic tracers in summer forest aerosols: a case study of a Quercus and Picea Mixed Forest in Hokkaido, Japan. Geochem J 45:297–308

    CAS  Google Scholar 

  • Fu PQ, Kawamura K, Okuzawa K, Aggarwal SG, Wang G, Kanaya Y, Wang Z (2008) Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, north China plain. J Geophy Res: Atmos 113:10.1029/2008JD009900

    Google Scholar 

  • Fu PQ, Kawamura K, Barrie LA (2009a) Photochemical and other sources of organic compounds in the Canadian high Arctic pollution during winter spring. Environ Sci Technol 43:286–292

    CAS  Google Scholar 

  • Fu PQ, Kawamura K, Chen J, Barrie LA (2009b) Isoprene, monoterpene, and sesquiterpene oxidation products in the high arctic aerosols during late winter to early summer. Environ Sci Technol 43:4022–4028

    CAS  Google Scholar 

  • Fu PQ, Kawamura K, Pavuluri CM, Swaminathan T, Chen J (2010) Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmos Chem Phys 10:2663–2689

    CAS  Google Scholar 

  • Fu PQ, Kawamura K, Kobayashi M, Simoneit BRT (2012) Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: significant contributions of airborne pollen and Asian dust in spring. Atmos Environ 55:234–239

    CAS  Google Scholar 

  • Gao S, Hegg DA, Hobbs PV, Kirchstetter TW, Magi BI, Sadilek M (2003) Water-soluble organic components in aerosols associated with savanna fires in Southern Africa: identification, evolution, and distribution. J Geophys Res: Atmos 108:D13. doi:10.1029/2002JD002324

    Google Scholar 

  • Giri B, Patel KS, Jaiswal NK, Sharma S, Ambade B, Wang W, Simoneit BR (2013) Composition and sources of organic tracers in aerosol particles of industrial central India. Atmos Res 120:312–324

    Google Scholar 

  • Godri KL, Green DC, Fuller GW, Osto MD, Beddows DC, Kelly FJ, Harrison RM, Mudway IS (2010) Particulate oxidative burden associated with firework activity. Environ Sci Technol 44:8295–8301

    CAS  Google Scholar 

  • Graham B, Bracero M, O.L., Guyon P, Roberts GC, Decesari S, Facchini MC, Artaxo P, Maenhaut W, Koll P, Andreae MO (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. characterization by NMR and GC–MS. J Geophys Res: Atmos 107:14–16

  • Graham B, Guyon P, Taylor PE, Artaxo P, Maenhaut W, Glovsky MM, Flagan RC, Andreae MO (2003) Organic compound present in natural Amazonian aerosol: characterise by gas chromatography–mass spectrometry. J Geophys Res: Atmos 108:D24. doi:10.1029/2003JD003990

    Google Scholar 

  • Graham B, Falkovich AH, Rudich Y, Maenhaut W, Guyon P, Andreae MO (2004) Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers. Atmos Environ 38:1593–1604

    CAS  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    CAS  Google Scholar 

  • Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmos Chem Phys 12:6645–6665

    CAS  Google Scholar 

  • Hennigan CJ, Sullivan AP, Collett JL, Robinson AL (2010) Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys Res Lett 37:9. doi:10.1029/2010GL043088

    Google Scholar 

  • Ho KF, Ho SSH, Lee SC, Kawamura K, Zou SC, Cao JJ, Xu HM (2011) Sumer and winter variations of dicarboxylic acids, fatty acids and benzic acid in PM2.5 in Pearl Delta River Region, China. Atmos Chem Phys 11:2197–2208

    CAS  Google Scholar 

  • Hoffmann D, Tilgner A, Iinuma Y, Herrmann H (2010) Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ Sci Technol 44:694–699

    CAS  Google Scholar 

  • Hsieh LY, Chen CL, Wan MW, Tsai CH, Tsai YI (2008) Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42:6836–6850

    CAS  Google Scholar 

  • Hsieh LY, Kuo SC, Chen CL, Tsai YI (2009) Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol Atmospheric Environment 43:4396–4406

    CAS  Google Scholar 

  • Ion AC, Vermeyle R, Kourtchev I, Cafmeyer J, Chi X, Gelencser A, Maenhaut W, Claeys M (2005) Polar organic compounds in rural PM aerosols from K–puszta, Hungary, during a 2003 summer field campaign: sources and diel variations. Atmos Chem Phys 5:1805–1814

    CAS  Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    CAS  Google Scholar 

  • Jacobson MC, Hansson HC, Noone KJ, Charlson RJ (2000) Organic atmospheric aerosols: review and state of science. Rev Geophys 38:267–294

    CAS  Google Scholar 

  • Jolly A, Smargiassi A, Kosatsky T, Fournier M, Zlotorzynska ED, Celo V, Mathieu D, Servranckx R, Damours R, Malo A, Brook J (2010) Characterisation of particulate exposure during firework displays. Atmos Environ 44:4325–4329

    Google Scholar 

  • Jung J, Tsatsral B, Kim YJ, Kawamura K (2010) Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the Cold Winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J Geophys Res: Atmos 115:D22. doi:10.1029/2010JD014339

    Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123

    CAS  Google Scholar 

  • Karar K, Gupta AK (2006) Seasonal variation and chemical characterization of ambient PM10 at residential and industrial sites if an urban region of Kolkata (Calcutta). India Aerosol Air Qual Res 81:36–53

    CAS  Google Scholar 

  • Kawamura K, Gagosian RB (1990) Mid-chain ketocarboxylic acids in the remote marine atmosphere: distribution patterns and possible formation mechanisms. J Atmos Chem 11:107–122

    CAS  Google Scholar 

  • Kawamura K, Ikushima K (1993) Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ Sci Technol 27:2227–2235

    CAS  Google Scholar 

  • Kawamura K, Kaplan IR (1987) Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ Sci Technol 21:105–110

    CAS  Google Scholar 

  • Kawamura K, Yasui O (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos Environ 39:1945–1960

    CAS  Google Scholar 

  • Kawamura K, Kasukabe H, Barrie LA (2010) Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: photochemical aging of organic aerosols in the arctic spring. J Geophys Res: Atmos 115:D21. doi:10.1029/2010JD014299

    Google Scholar 

  • Kerminen VM, Teinila K, Hillamo R, Makela T (1999) Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere. Atmos Environ 33:2089–2100

    CAS  Google Scholar 

  • Kerminen VM, Ojanen C, Pakkanen T, Hillamo R, Aurela M, Merilainen J (2000) Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. J Aerosol Sci 31:349–362

    CAS  Google Scholar 

  • Kundu S, Kawamura K, Andreae TW, Hoffer A, Andreae MO (2010a) Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos Chem Phys 10:2209–2225

    CAS  Google Scholar 

  • Kundu S, Kawamura K, Andreae TW, Hoffer A, Andreae MO (2010b) Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC Campaign in Rondônia, Brazil. J Aerosol Sci 41:118–133

    CAS  Google Scholar 

  • Kundu S, Kawamura K, Lee M (2010c) Seasonal variation of diacids, ketocacids, and α-dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: implications for sources, formation, and degradation during long-range transport. J Geophys Res: Atmos 115:D193027. doi:10.1029/2010JD013973

    Google Scholar 

  • Lelieveld JO, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    CAS  Google Scholar 

  • Li YC, Yu JZ (2005) Simultaneous determination of mono and dicarboxylic acids, o-oxo-carboxylic acids, midchain ketocarboxylic acids and aldehydes in atmospheric aerosol samples. Environ Sci Technol 39:7616–7624

    CAS  Google Scholar 

  • Lin CH, Wu YL, Lai CH, Watson JG, Chow JC (2008) Air quality measurements from the southern particulate matter supersite in Taiwan. Aerosol Air Qual Res 8:233–264

    CAS  Google Scholar 

  • Maenhaut W, Vermeylen R, Claeys M, Vercauteren J, Matheeussen C, Roekens E (2012) Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium. Sci Tot Environ 437:226–236

    CAS  Google Scholar 

  • Medeiros PM, Simoneit BRT (2007) Analysis of sugars in environmental samples by gas chromatography–mass spectrometry. J Chrom, A 1141:271–278

    CAS  Google Scholar 

  • Medeiros PM, Simoneit BRT (2008) Source profiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests. Environ Sci Technol 42:8310–8316

    CAS  Google Scholar 

  • Medeiros PM, Conte MH, Weber JC, Simoneit BRT (2006) Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland experimental forest, Maine. Atmos Environ 40:1694–1705

    CAS  Google Scholar 

  • Miyazaki Y, Aggarwal SG, Sing K, Gupta PK, Kawamura K (2009) Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristic and formation processes. J Geophys Res: Atmos 114:D19206. doi:10.1029/2009JD011790

    Google Scholar 

  • Mochida M, Kawabata A, Kawamura K, Hatsushika H, Yamazaki K (2003) Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the Western North Pacific. J Geophys Res: Atmos 108, D64193. doi:10.1029/2002JD002355

    Google Scholar 

  • Muller K, Pinxteren DV, Plewka A, Svrcina B, Kramberger H, Hofmann D, Bachmann K, Herrmann H (2005) Aerosol characterisation at the FEBUKO upwind station Goldlauter (II): detailed organic chemical characterization. Atmos Environ 39:4219–4231

    Google Scholar 

  • Nirmalkar J, Deb MK, Deshmukh DK, Verma SK (2013) Mass loading of size segregated atmospheric aerosols in the ambient air during fireworks episodes in eastern central India. Bull Environ Contam Toxicol 90:434–439

    CAS  Google Scholar 

  • Nolte CG, Schauer JJ, Cass GR, Simoneit BRT (2001) Highly polar organic compounds present in wood smoke and in the ambient atmosphere. Environ Sci Technol 35:1912–1919

    CAS  Google Scholar 

  • Pachauri T, Singla V, Satsangi A, Lakhani A, Kumari KM (2013) Characterization of major pollution events (dust, haze, and two festival events) at Agra, India. Environ Sci Pollut Res 20:5737–5752

    CAS  Google Scholar 

  • Pacini E, Hesse M (2005) Pollenkitt—its composition, forms and functions. Flora 200:399–415

    Google Scholar 

  • Pavagadhi S, Betha R, Venkatesan S, Balasubramanian R, Hande MP (2013) Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode Environ Sci Pollut Res 20:2569–2578

    CAS  Google Scholar 

  • Pietrogrande MC, Abbaszade G, Schnelle–Kreis J, Bacco D, Mercuriali M, Zimmermann R (2011) Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany. Environ Pollut 159:1861–1868

    CAS  Google Scholar 

  • Pietrogrande MC, Bacco D, Rossi M (2013) Chemical characterization of polar organic markers in aerosols in a local area around Bologna, Italy. Atmos Environ 75:279–286

    Google Scholar 

  • Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ 42:7530–7543

    CAS  Google Scholar 

  • Pope CA III, Brook RD, Burnett RT, Dockery DW (2011) How is cardiovascular disease mortality risk affected by duration and intensity of fine particulate matter exposure? An integration of the epidemiologic evidence. Air Qual Atmos Health 4:5–14

    Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Sci 294:2119–2124

    CAS  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asia climate and hydrological cycle. P Natl Acad Sci 102:5326–5333

    CAS  Google Scholar 

  • Ravindra K, Mor S, Kaushik CP (2003) Short-term variation in air quality associated with firework events: a case study. J Environ Monit 5:260–264

    CAS  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Sci 315:1259–1262

    CAS  Google Scholar 

  • Sanders EB, Goldsmith AI, Seeman JI (2003) A model that distinguishes the pyrolysis of D-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation J Anal App pyrol 66:29–50

    CAS  Google Scholar 

  • Schkolnik G, Falkovich AH, Rudich Y, MaenhautW AP (2005) A new analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples. Environ Sci Technol 39:2744–2752

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change Wiley 1326

  • Sempere R, Kawamura K (2003) Trans‐hemispheric contribution of C2–C10 α, ω‐dicarboxylic acids, and related polar compounds to water‐soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochem Cycles 17:2

    Google Scholar 

  • Sharma M, Maloo S (2005) Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos Environ 39:6015–6026

    CAS  Google Scholar 

  • Simoneit BR (1999) A review of biomarker compounds as source indicators and tracers for air pollution. Environ Sci Pollut Res 6:159–169

    CAS  Google Scholar 

  • Simoneit BRT (2002) Biomass burning—a review of organic tracers for smoke from incomplete combustion. Applied Geochem 17:129–162

    CAS  Google Scholar 

  • Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182

    CAS  Google Scholar 

  • Simoneit BR, Elias VO, Kobayashi M, Kawamura K, Rushdi AI, Medeiros PM, Didyk BM (2004) Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ Sci Technol 38:5939–5949

    CAS  Google Scholar 

  • Srivastava AK, Singh S, Tiwari S, Bisht DS (2012) Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin. Environ Sci Pollut Res 19:1144–1158

    CAS  Google Scholar 

  • Sullivan AP, Holden AS, Patterson LA, McMeeking GR, Kreidenweis SM, Malm WC, Hao WM, Wold CE, Collett JL (2008) A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2. 5 Organic carbon. J Geophys Res:Atmos 113:D22. doi:10.1029/2008JD010216

    Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurty B (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmos Chem 62:193–209

    Google Scholar 

  • Tsai YI, Wu PL, Hsu YT, Yang CR (2010) Anhydrosugar and sugar alcohol organic markers associated with carboxylic acids in particulate matter from incense burning. Atmos Environ 44:3708–3718

    CAS  Google Scholar 

  • Tsai YI, Sopajaree K, Chotruksa A, Wu HC, Kuo SC (2013) Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai basin, Thailand. Atmos Environ 78:93–104

    CAS  Google Scholar 

  • Vecchi R, Bernardoni V, Cricchio D, Alessandro AD, Fermo P, Lucarelli F, Nava S, Valli G (2007) The impact of fireworks on airborne particles. Atmos Environ 42:1121–1132

    Google Scholar 

  • Vicente A, Alves C, Monteiro C, Nunes T, Mirante F, Evtyugina M, Pio C (2011) Measurement of trace gases and organic compounds in the smoke plume from a wildfire in Penedono (Central Portugal). Atmos Environ 45:5172–5182

    CAS  Google Scholar 

  • Wan ECFH, Yu JZ (2007) Analysis of sugar and sugar polyols in atmospheric aerosols by chloride attachment/negative ion electrospray mass spectrometry. Environ Sci Technol 41:2459–2466

    CAS  Google Scholar 

  • Wang G, Niu S, Liu C, Wang L (2002) Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmos Environ 36:1941–1950

    CAS  Google Scholar 

  • Wang Z, Bi X, Sheng G, Fu J (2009) Characterization of organic compounds and molecular tracers from biomass burning smoke in south China I: broad-leaf trees and shrubs. Atmos Environ 43:3096–3102

    CAS  Google Scholar 

  • Wang G, Xia M, Hu S, Gao S, Tachibana E, Kawamura K (2010) Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implication for dust and coal burning emission and secondary aerosol formation. Atmos Chem Phys 10:6087–6096

    CAS  Google Scholar 

  • Wang G, Kawamura K, Cheng C, Li J, Cao J, Zhang R, Zhao Z (2012) Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in size-resolved atmospheric particles from Xi’an city, China. Environ Sci Technol 46:4783–4791

    CAS  Google Scholar 

  • Warneck P (2003) In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos Environ 37:2423–2427

    CAS  Google Scholar 

  • Watson JG, Chow JC, Chen LWA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res 5:65–102

    CAS  Google Scholar 

  • Whitman T, Nicholson CF, Torres D, Lehmann J (2011) Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis. Environ Sci Technol 45:3687–3694

    CAS  Google Scholar 

  • Xie M, Wang G, Hu S, Gao S, Han Q, Xu Y, Feng J (2010) Polar organic and inorganic markers in PM10 aerosols from an inland city of China: seasonal trends and sources. Sci Total Environ 408:5452–5460

    CAS  Google Scholar 

  • Yao X, Fang M, Chan CK, Ho KF, Lee SC (2004) Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmos Environ 38:963–970

    CAS  Google Scholar 

  • Yttri KE, Dye C, Kiss G (2007) Ambient aerosol concentrations of sugars and sugars-alcohols at four different sites in Norway. Atmos Chem Phys 7:4267–4279

    CAS  Google Scholar 

  • Zhang ZS, Engling G, Lin CY, Chou CCK, Lung SC, Chang SY, Fan S, Chan CY, Zhang YH (2010) Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmos Environ 44:3187–3195

    CAS  Google Scholar 

  • Zhang YN, Zhang ZS, Chan CY, Engling G, Sang XF, Shi S, Wang XM (2012) Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. Environ Sci Pollut Res 19:244–255

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Head, School of Studies in Chemistry and School of Studies in Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, India, for providing necessary laboratory support. The authors are also thankful to Department of Agro Meteorology, Indira Gandhi Agricultural University, Raipur (CG)-492 006 for providing meteorological data. We also gratefully thank the National Science Council of Taiwan (Grant Nos. NSC 99-2221-E-041-014-MY3 and NSC 102-2221-E-041-003-MY3) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying I. Tsai.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmalkar, J., Deb, M.K., Deshmukh, D.K. et al. Molecular markers in ambient aerosol in the Mahanadi Riverside Basin of eastern central India during winter. Environ Sci Pollut Res 22, 1220–1231 (2015). https://doi.org/10.1007/s11356-014-3416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3416-4

Keywords

Navigation