Skip to main content

Advertisement

Log in

Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil–water systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil–water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM–biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAHs:

Polycyclic aromatic hydrocarbons

SOM:

Soil organic matter

DOM:

Dissolved organic matter

HOCs:

Hydrophobic organic compounds

CMC:

Critical micellar concentration

PHE:

Phenanthrene

PYR:

Pyrene

MSM:

Mineral salt medium

FTIR:

Fourier transform infrared

References

  • Abuhamed T, Bayraktar E, Mehmetoglu T, Mehmetoglu U (2004) Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem 39(8):983–988

    Article  CAS  Google Scholar 

  • Akkanen J, Kukkonen JVK (2003) Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 22(3):518–524

    Article  CAS  Google Scholar 

  • Alcantara MT, Gomez J, Pazos M, Sanroman MA (2009) PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater 166(1):462–468

    Article  CAS  Google Scholar 

  • Alcántara MT, Gómez J, Pazos M, Sanromán MA (2009) PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater 166:462–468

    Article  Google Scholar 

  • An C, Huang G, Yu H, Wei J, Chen W, Li G (2010) Effect of short-chain organic acids and pH on the behaviors of pyrene in soil–water system. Chemosphere 81(11):1423–1429

    Article  CAS  Google Scholar 

  • Bai GY (1997) Biosurfactant enhanced nonaqueous phase liquid (NAPL) removal and bacterial transport in porous media. Ph.D. thesis, University of Arizona

  • Cao J, Guo H, Zhu HM, Jiang L, Yang H (2008) Effects of SOM, surfactant and pH on the sorption–desorption and mobility of prometryne in soils. Chemosphere 70(11):2127–2134

    Article  CAS  Google Scholar 

  • Chen BL, Ding J (2012) Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J Hazard Mater 229:159–169

    Article  Google Scholar 

  • Chen JF, Wong MH, Wong YS, Tam NFY (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar Pollut Bull 57(6–12):695–702

    Article  CAS  Google Scholar 

  • Chen JL, Wong MH, Wong YS, Tam NFY (2011) Modeling sorption and biodegradation of phenanthrene in mangrove sediment slurry. J Hazard Mater 190(1–3):409–415

    Article  CAS  Google Scholar 

  • Cheng KY, Lai KM, Wong JWC (2008) Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73(5):791–797

    Article  CAS  Google Scholar 

  • Churchill PF, Dudley RJ, Churchill SA (1995) Surfactant-enhanced bioremediation. Waste Manag 15(5–6):371–377

    Article  CAS  Google Scholar 

  • Desai AM, Autenrieth RL, Dimitriou-Christidis P, McDonald TJ (2008) Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation 19(2):223–233

    Article  CAS  Google Scholar 

  • Garcia-Junco M, Gomez-Lahoz C, Niqui-Arroyo J-L, Ortega-Calvo J-J (2003) Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environ Sci Technol 37(13):2988–2996

    Article  CAS  Google Scholar 

  • Gourlay C, Tusseau-Vuillemin MH, Garric J, Mouchel JM (2003) Effect of dissolved organic matter of various origins and biodegradabilities on the bioaccumulation of polycyclic aromatic hydrocarbons in Daphnia magna. Environ Toxicol Chem 22(6):1288–1294

    Article  CAS  Google Scholar 

  • Guerin TF (1999) The extraction of aged polycyclic aromatic hydrocarbon (PAH) residues from a clay soil using sonication and a Soxhlet procedure: a comparative study. J Environ Monitor 1(1):63–67

    Article  CAS  Google Scholar 

  • Haftka JJH, Parsons JR, Govers HAJ, Ortega-Calvo JJ (2008) Enhanced kinetics of solid-phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter. Environ Toxicol Chem 27(7):1526–1532

    Article  CAS  Google Scholar 

  • Han D, Zhao YC, Xue BJ, Chai XL (2010) Effect of bio-column composed of aged refuse on methane abatement — a novel configuration of biological oxidation in refuse landfill. J Environ Sci (China) 22(5):769–776

    Article  CAS  Google Scholar 

  • Kobayashi T, Murai Y, Tatsumi K, Iimura Y (2009) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp enhanced by water-extractable organic matter from manure compost. Sci Total Environ 407(22):5805–5810

    Article  CAS  Google Scholar 

  • Korshin GV, Li CW, Benjamin MM (1997) Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res 31(7):1787–1795

    Article  CAS  Google Scholar 

  • Lippold H, Gottschalch U, Kupsch H (2008) Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere 70(11):1979–1986

    Article  CAS  Google Scholar 

  • Lu L, Zhu LZ (2012) Effect of soil components on the surfactant-enhanced soil sorption of PAHs. J Soil Sediments 12(2):161–168

    Article  CAS  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22(10):2280–2292

    Article  CAS  Google Scholar 

  • Marschner B, Winkler R, Jodemann D (2005) Factors controlling the partitioning of pyrene to dissolved organic matter extracted from different soils. Eur J Soil Sci 56(3):299–306

    CAS  Google Scholar 

  • Nakar D, Gutnick DL (2003) Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1. J Bacteriol 185(3):1001–1009

    Article  CAS  Google Scholar 

  • Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32(12):1806–1812

    Article  CAS  Google Scholar 

  • Noordman WH, Bruining JW, Wietzes P, Janssen DB (2000) Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices. J Contam Hydrol 44(2):119–140

    Article  CAS  Google Scholar 

  • Plaza C, Xing B, Fernandez JM, Senesi N, Polo A (2009) Binding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environ Pollut 157(1):257–263

    Article  CAS  Google Scholar 

  • Poeton TS, Stensel HD, Strand SE (1999) Biodegradation of polyaromatic hydrocarbons by marine bacteria: Effect of solid phase on degradation kinetics. Water Res 33(3):868–880

    Article  CAS  Google Scholar 

  • Rodriguez-Escales P, Sayara T, Vicent T, Folch A (2012) Influence of soil granulometry on pyrene desorption in groundwater using surfactants. Water Air Soil Pollut 223(1):125–133

    Article  CAS  Google Scholar 

  • Rodriguez-Escales P, Borras E, Sarra M, Folch A (2013) Granulometry and surfactants, key factors in desorption and biodegradation (T. versicolor) of PAHs in soil and Ggroundwater. Water Air Soil Pollut 224(2):2422–2433

    Article  Google Scholar 

  • Schwartz E, Scow KM (1999) Using biodegradation kinetics to measure availability of aged phenanthrene to bacteria inoculated into soil. Environ Toxicol Chem 18(8):1742–1746

    Article  CAS  Google Scholar 

  • Sekelsky AM, Shreve GS (1999) Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnol Bioeng 63(4):401–409

    Article  CAS  Google Scholar 

  • Seo Y, Bishop PL (2007) Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environ Sci Technol 41:7107–7113

    Article  CAS  Google Scholar 

  • Shin KH, Kim KW, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization–biodegradation process. J Hazard Mater 137(3):1831–1837

    Article  CAS  Google Scholar 

  • Sisto A, Fusella E, Urbina H, Leyn V, Naranjo L (2008) Molecular characterization of bacteria isolated from waste electrical transformer oil. Mosc Univ Chem Bull 63(2):120–125

    Article  Google Scholar 

  • Sponza DT, Gok O (2012) Aerobic biodegradation and inhibition kinetics of poly-aromatic hydrocarbons (PAHs) in a petrochemical industry wastewater in the presence of biosurfactants. J Chem Technol Biotechnol 87(5):658–672

    Article  CAS  Google Scholar 

  • Tao S, Xu FL, Liu WX, Cui YH, Coveney RM (2006) A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter. Environ Sci Technol 40(7):2219–2224

    Article  CAS  Google Scholar 

  • Tecon R, van der Meer JR (2010) Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Appl Microbiol Biotechnol 85(4):1131–1139

    Article  CAS  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151(1):155–163

    Article  CAS  Google Scholar 

  • Wu WL, Sun HW, Wang L, Li KG, Wang L (2010) Comparative study on the micelle properties of synthetic and dissolved organic matters. J Hazard Mater 174(1–3):635–640

    Article  CAS  Google Scholar 

  • Yang WC, Duan L, Zhang N, Zhang CD, Shipley HJ, Kan AT, Tomson MB, Chen W (2008) Resistant desorption of hydrophobic organic contaminants in typical Chinese soils: implications for long-term fate and soil quality standards. Environ Toxicol Chem 27(1):235–242

    Article  CAS  Google Scholar 

  • Yang Y, Shu L, Wang XL, Xing BS, Tao S (2010) Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene. Environ Sci Technol 44(9):3339–3344

    Article  CAS  Google Scholar 

  • Yu H, Huang GH (2009a) Effects of sodium acetate as a pH control amendment on the composting of food waste. Bioresour Technol 100(6):2005–2011

    Article  CAS  Google Scholar 

  • Yu H, Huang GH (2009b) Isolation and characterization of biosurfactant- and bioemulsifier-producing bacteria from petroleum contaminated sites in Western Canada. Soil Sediment Contam 20(3):274–288

    Article  Google Scholar 

  • Yu H, Huang GH, An CJ, Wei J (2011) Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil–water system. J Hazard Mater 190(1–3):883–890

    Article  CAS  Google Scholar 

  • Zhang YP, Wang F, Wang C, Hong Q, Kengara FO, Wang T, Song Y, Jiang X (2011) Enhanced microbial degradation of humin-bound phenanthrene in a two-liquid-phase system. J Hazard Mater 186(2–3):1830–1836

    Article  CAS  Google Scholar 

  • Zhu HB, Aitken MD (2010) Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environ Sci Technol 44(19):7260–7265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Nation Science Foundation (51109078 and 51102093) and Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-He Huang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Huang, GH., Xiao, H. et al. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil–water systems. Environ Sci Pollut Res 21, 10536–10549 (2014). https://doi.org/10.1007/s11356-014-2958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2958-9

Keywords

Navigation