Skip to main content
Log in

Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adachi A, Takagi S, Okano T (2001) Studies on removal efficiency of rice bran for pesticides. J Health Sci 47(2):94–98

    Article  CAS  Google Scholar 

  • Akhtar M, Iqbal S, Bhanger MI, Moazzam M (2009) Utilization of organic by-products for the removal of organophosphorous pesticide from aqueous media. J Hazard Mater 162(2–3):703–707

    Article  CAS  Google Scholar 

  • Avisar D, Primor O, Gozlan I, Mamane H (2010) Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water Air Soil Pollut 209(1–4):439–450

    Article  CAS  Google Scholar 

  • Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater 122(3):195–204

    Article  CAS  Google Scholar 

  • Bui TX, Choi H (2009) Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J Hazard Mater 168(2–3):602–608

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926

    Article  CAS  Google Scholar 

  • Cases JM (2002) Natural minerals and divided solids: Methodology for understanding surface phenomena related to industrial uses and environmental problems. Minér Nat Solides Div Méthodol d’étude Phénomènes Surf Appl Ind Probl Environ 334(9):585–596

    CAS  Google Scholar 

  • Chang PH, Li Z, Jiang WT, Jean JS (2009a) Adsorption and intercalation of tetracycline by swelling clay minerals. Appl Clay Sci 46(1):27–36

    Article  CAS  Google Scholar 

  • Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, Jean JS, Lin KH (2009b) Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater 165(1–3):148–155

    Article  CAS  Google Scholar 

  • Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99(10):4515–4519

    Article  CAS  Google Scholar 

  • De Ridder DJ, Verliefde ARD, Heijman SGJ, Verberk JQJC, Rietveld LC, Van Der Aa LTJ, Amy GL, Van Dijk JC (2011) Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon. Water Sci Technol 63(3):416–423

    Article  Google Scholar 

  • Estevinho BN, Ratola N, Alves A, Santos L (2006) Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. J Hazard Mater 137(2):1175–1181

    Article  CAS  Google Scholar 

  • Floehr T, Xiao H, Scholz-Starke B, Wu L, Hou J, Yin D, Zhang X, Ji R, Yuan X, Ottermanns R, Roß-Nickoll M, Schäffer A, Hollert H (2013) Solution by dilution?—A review on the pollution status of the Yangtze River. Environ Sci Pollut Res 20(10):6934–6971

    Article  CAS  Google Scholar 

  • Gabet-Giraud V, Miège C, Choubert JM, Ruel SM, Coquery M (2010) Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants. Sci Total Environ 408(19):4257–4269

    Article  CAS  Google Scholar 

  • Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266(3–4):175–189

    Article  CAS  Google Scholar 

  • Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: A threat to drinking water? Trends Biotechnol 23(4):163–167

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Lemić J, Kovačević D, Tomašević-Čanović M, Stanić T, Pfend R (2006) Removal of atrazine, lindane and diazinone from water by organo-zeolites. Water Res 40(5):1079–1085

    Article  Google Scholar 

  • Lemić J, Tomašević-Čanović M, Adamović M, Kovačević D, Milićević S (2007) Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites. Microporous Mesoporous Mater 105(3):317–323

    Article  Google Scholar 

  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249–275

    Article  CAS  Google Scholar 

  • Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367(2–3):544–558

    Article  CAS  Google Scholar 

  • Martin Ruel S, Esperanza M, Choubert JM, Valor I, Budzinski H, Coquery M (2010) On-site evaluation of the efficiency of conventional and advanced secondary processes for the removal of 60 organic micropollutants. Water Sci Technol 62(12):2970–2978

    Article  CAS  Google Scholar 

  • Martin Ruel S, Choubert JM, Esperanza M, Miège C, Navalón Madrigal P, Budzinski H, Le Ménach K, Lazarova V, Coquery M (2011) On-site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications. Water Sci Technol 63(11):2486–2497

    Article  CAS  Google Scholar 

  • Martin Ruel S, Choubert JM, Budzinski H, Miège C, Esperanza M, Coquery M (2012) Occurrence and fate of relevant substances in wastewater treatment plants regarding Water Framework Directive and future legislations. Water Sci Technol 65(7):1179–1189

    Article  CAS  Google Scholar 

  • McKay G (1998) Application of surface diffusion model to the adsorption of dyes on bagasse pith. Adsorption 4(3–4):361–372

    Article  CAS  Google Scholar 

  • Memon GZ, Bhanger MI, Akhtar M, Talpur FN, Memon JR (2008) Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem Eng J 138(1–3):616–621

    Article  CAS  Google Scholar 

  • Nkansah MA, Christy AA, Barth T, Francis GW (2012) The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. J Hazard Mater 217–218:360–365

    Article  Google Scholar 

  • Palmer PM, Wilson LR, O’Keefe P, Sheridan R, King T, Chen CY (2008) Sources of pharmaceutical pollution in the New York City Watershed. Sci Total Environ 394(1):90–102

    Article  CAS  Google Scholar 

  • Polubesova T, Zadaka D, Groisman L, Nir S (2006) Water remediation by micelle-clay system: case study for tetracycline and sulfonamide antibiotics. Water Res 40(12):2369–2374

    Article  CAS  Google Scholar 

  • Rakić V, Rajić N, Daković A, Auroux A (2012) The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous and Mesoporous Materials

  • Scherrer RA, Howard SM (1977) Use of distribution coefficients in quantitative structure-activity relationships. J Med Chem 20(1):53–58

    Article  CAS  Google Scholar 

  • Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181

    Article  CAS  Google Scholar 

  • Spongberg AL, Witter JD (2008) Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci Total Environ 397(1–3):148–157

    Article  CAS  Google Scholar 

  • Tahar A, Choubert JM, Coquery M (2013) Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review. Environ Sci Pollut Res 20(8):5085–5095

    Article  CAS  Google Scholar 

  • Ternes TA (2001) Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends Anal Chem 20(8):419–434

    Article  CAS  Google Scholar 

  • Ternes T, Janex-Habibi T, Knaker N, Kreuzinger N, Siegrist H (2004) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse (POSEIDON project)

  • Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177(1):150–158

    Article  CAS  Google Scholar 

  • Verlicchi P, Galletti A, Petrovic M, BarcelÓ D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389(3–4):416–428

    Article  CAS  Google Scholar 

  • Vieno NM, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection. J Chromatogr A 1134(1–2):101–111

    Article  CAS  Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39(17):6649–6663

    Article  CAS  Google Scholar 

  • Zhang H, Huang CH (2007) Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 66(8):1502–1512

    Article  CAS  Google Scholar 

  • Zhang W, Ding Y, Boyd SA, Teppen BJ, Li H (2010) Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere 81(7):954–960

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355(9217):1789–1790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Onema (The French National Agency for Water and Aquatic Ecosystems) for providing financial support, Calgon Carbon (AC), Somez (ZE) and Weber (EC) for providing the materials tested. We are also grateful to L. Dherret, E. Vray, S. Schiavone, C. Michard, D. Gorini, L. Richard and P. le Pimpec for their assistance with sampling and subsequent analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wisniewski.

Additional information

Responsible editor: Hongwen Sun

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahar, A., Choubert, J.M., Miège, C. et al. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?. Environ Sci Pollut Res 21, 5660–5668 (2014). https://doi.org/10.1007/s11356-013-2439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2439-6

Keywords

Navigation