Skip to main content
Log in

Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation

  • Heavy Metals in the Environment : Sources, Interactions and Human Health
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The emission, transport, deposition and eventual fate of mercury (Hg) in the Mediterranean area has been studied using a modified version of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem). This model version has been developed specifically with the aim to simulate the atmospheric processes determining atmospheric Hg emissions, concentrations and deposition online at high spatial resolution. For this purpose, the gas phase chemistry of Hg and a parametrised representation of atmospheric Hg aqueous chemistry have been added to the regional acid deposition model version 2 chemical mechanism in WRF/Chem. Anthropogenic mercury emissions from the Arctic Monitoring and Assessment Programme included in the emissions preprocessor, mercury evasion from the sea surface and Hg released from biomass burning have also been included. Dry and wet deposition processes for Hg have been implemented. The model has been tested for the whole of 2009 using measurements of total gaseous mercury from the European Monitoring and Evaluation Programme monitoring network. Speciated measurement data of atmospheric elemental Hg, gaseous oxidised Hg and Hg associated with particulate matter, from a Mediterranean oceanographic campaign (June 2009), has permitted the model’s ability to simulate the atmospheric redox chemistry of Hg to be assessed. The model results highlight the importance of both the boundary conditions employed and the accuracy of the mercury speciation in the emission database. The model has permitted the reevaluation of the deposition to, and the emission from, the Mediterranean Sea. In light of the well-known high concentrations of methylmercury in a number of Mediterranean fish species, this information is important in establishing the mass balance of Hg for the Mediterranean Sea. The model results support the idea that the Mediterranean Sea is a net source of Hg to the atmosphere and suggest that the net flux is ≈30 Mg year−1 of elemental Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andersson M, Sommar J, Gårdfeldt K, Lindqvist O (2008) Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar Chem 110(3–4):190–194

    Article  CAS  Google Scholar 

  • Andersson ME, Gårdfeldt K, Wängberg I, Sprovieri F, Pirrone N, Lindqvist O (2007) Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Mar Chem 104:214–226. doi:10.1016/j.marchem.2006.11.003

    Article  CAS  Google Scholar 

  • Andersson ME, Sommar J, Gardfeldt K, Jutterström S (2011) Air–sea exchange of volatile mercury in the North Atlantic Ocean. Mar Chem 125(1–4):1–7. doi:10.1016/j.marchem.2011.01.005

    Article  CAS  Google Scholar 

  • Baker KR, Bash JO (2012) Regional scale photochemical model evaluation of total mercury wet deposition and speciated ambient mercury. Atmos Environ 49(0):151–162

    Article  CAS  Google Scholar 

  • Bullock OR, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku JY, Lohman K, Myers TC, Park RJ, Seigneur C, Selin NE, Sistla G, Vijayaraghavan K (2008) The North American Mercury Model Intercomparison Study (NAMMIS): study description and model-to-model comparisons. J Geophys Res Atmos 113(D17). doi:10.1029/2008JD009803

    Google Scholar 

  • Bullock ORJ, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku JY, Lohman K, Myers TC, Park RJ, Seigneur C, Selin NE, Sistla G, Vijayaraghavan K (2009) An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study. J Geophys Res 114(D8):D08,301–

    Google Scholar 

  • Bullock Jr OR, Brehme KA (2002) Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmos Environ 36(13):2135–2146. doi:10.1016/S1352-23100200220-0

    Article  CAS  Google Scholar 

  • Cossa D, Coquery M (2005) The mediterranean mercury anomaly, geochemical or biological issue. In: Saliot A (ed) The Mediterranean Sea, handbook of environmental chemistry, vol 5K. Springer, Berlin Heidelberg, pp 177–208

  • Damian V, Sandu A, Damian M, Potra F, Carmichael G (2002) The kinetic preprocessor KPP—a software environment for solving chemical kinetics. Comput Chem Eng 26(11):1567–1579. doi:10.1016/S0098-1354(02)00128-X

    Article  CAS  Google Scholar 

  • De Simone F, Gencarelli CN, Hedgecock IM, Pirrone N (2013) Global atmospheric cycle of mercury: a model study of the impact of oxidation mechanisms. Environmental Science and Pollution Research (in this issue)

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983. doi:10.1021/es305071v

    Article  CAS  Google Scholar 

  • Fast JD, Gustafson WI, Easter RC, Zaveri RA, Barnard JC, Chapman EG, Grell GA, Peckham SE (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of houston using a fully coupled meteorology-chemistry-aerosol model. J Geophys Res Atmos 111(D21). doi:10.1029/2005JD006721

    Google Scholar 

  • Freitas SR, Longo KM, Alonso MF, Pirre M, Marecal V, Grell G, Stockler R, Mello RF, Sánchez Gácita M (2011) Prep-chem-src – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geosci Model Dev 4(2):419–433. doi:10.5194/gmd-4-419-201

    Article  Google Scholar 

  • Friedli HR, Arellano AF, Cinnirella S, Pirrone N (2009) Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ Sci Technol 43(10):3507–3513. doi:10.1021/es802703g

    Article  CAS  Google Scholar 

  • Gårdfeldt K, Sommar J, Ferrara R, Ceccarini C, Lanzillotta E, Munthe J, Wängberg I, Lindqvist O, Pirrone N, Sprovieri F, Pesenti E, Strömberg D (2003) Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmos Environ 37, Supplement 1(0):73–84. doi:10.1016/S1352-2310(03)00238-3

    Article  Google Scholar 

  • Geng F, Zhao C, Tang X, Lu G, Tie X (2007) Analysis of ozone and VOCS measured in Shanghai: a case study. Atmospheric Environment 41(5):989–1001. doi:10.1016/j.atmosenv.2006.09.023

    Article  CAS  Google Scholar 

  • Grell G, Freitas SR, Stuefer M, Fast J (2011) Inclusion of biomass burning in WRF-chem: impact of wildfires on weather forecasts. Atmos Chem Phys 11(11):5289–5303. doi:10.5194/acp-11-5289-2011, http://www.atmos-chem-phys.net/11/5289/2011/

    Article  CAS  Google Scholar 

  • Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled online chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  CAS  Google Scholar 

  • Guenther A, Zimmerman P, Wildermuth M (1994) Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos Environ 28(6):1197–1210. doi:10.1016/1352-2310(94)90297-6

    Article  CAS  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res Atmos (1984–2012) 98(D7):12609–12617

    Article  Google Scholar 

  • Gustin MS, Weiss-Penzias PS, Peterson C (2012) Investigating sources of gaseous oxidized mercury in dry deposition at three sites across Florida, USA. Atmos Chem Phys 12(19):9201–9219

    Article  CAS  Google Scholar 

  • Hall B (1995) The gas phase oxidation of elemental mercury by ozone. Water Air Soil Pollut 80(1-4):301–315. doi:10.1007/BF01189680

    Article  CAS  Google Scholar 

  • Hedgecock IM, Pirrone N (2004) Chasing quicksilver: modeling the atmospheric lifetime of Hg0(g) in the marine boundary layer at various latitudes. Environ Sci Technol 38(1):69–76

    Article  CAS  Google Scholar 

  • Hedgecock IM, Pirrone N, Trunfio GA, Sprovieri F (2006) Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. J Geophys Res Atmos 111(D20). doi:10.1029/2006JD007117

    Google Scholar 

  • Hjellbrekke AG (2003) Data report 2001. Acidifying and eutrophying compounds, EMEP/CCC report. EMEP/CCC, Norway

  • Holmes CD, Jacob DJ, Mason RP, Jaffe DA (2009) Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmos Environ 43(14):2278–2285

    Article  CAS  Google Scholar 

  • Jacobson M (2005) Fundamentals of atmospheric modeling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jung G, Hedgecock IM, Pirrone N (2009) Echmerit v1.0—a new global fully coupled mercury-chemistry and transport model. Geosci Model Dev 2(2):175–195. doi:10.5194/gmd-2-175-2009

    Article  Google Scholar 

  • Lin CJ, Pongprueksa P, Lindberg SE, Pehkonen SO, Byun D, Jang C (2006) Scientific uncertainties in atmospheric mercury models I: model science evaluation. Atmos Environ 40(16):2911–2928

    Article  CAS  Google Scholar 

  • Lyman SN, Gustin MS, Prestbo EM, Kilner PI, Edgerton E, Hartsell B (2009) Testing and application of surrogate surfaces for understanding potential gaseous oxidized mercury dry deposition. Environ Sci Technol 43(16):6235–6241

    Article  CAS  Google Scholar 

  • Mason RP, Choi AL, Fitzgerald WF, Hammerschmidt CR, Lamborg CH, Soerensen AL, Sunderland EM (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res 119:101–117. doi:10.1016/j.envres.2012.03.013

    Article  CAS  Google Scholar 

  • Munthe J (1992) The aqueous oxidation of elemental mercury by ozone. Atmos Environ Part A General Topics 26(8):1461–1468

    Article  Google Scholar 

  • Myers T, Atkinson RD, Bullock OR Jr, Bash JO (2013) Investigation of effects of varying model inputs on mercury deposition estimates in the southwest US. Atmos Chem Phys 13(2):997–1009. doi:10.5194/acp-13-997-2013

    Article  CAS  Google Scholar 

  • Neu JL, Prather MJ (2012) Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone. Atmos Chem Phys 12(7):3289–3310. doi:10.5194/acp-12-3289-2012

    Article  CAS  Google Scholar 

  • Pacyna J, Wilson S, Steenhuisen F, Pacyna E (2005) Spatially distributed inventories of global anthropogenic emissions of mercury to the atmosphere www.amap.no/Resources/HgEmissions/

  • Peterson C, Alishahi M, Gustin MS (2012) Testing the use of passive sampling systems for understanding air mercury concentrations and dry deposition across Florida, USA. Sci Total Environ 424(0):297–307

    Article  CAS  Google Scholar 

  • Pongprueksa P, Lin CJ, Lindberg SE, Jang C, Braverman T, Jr ORB, Ho TC, Chu HW (2008) Scientific uncertainties in atmospheric mercury models III: boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism. Atmos Environ 42(8):1828–1845

    Article  CAS  Google Scholar 

  • Ryaboshapko A, Artz R, Bullock R, Christensen J, Cohen M, Dastoor A, Davignon D, Draxler R, Ebinghaus R, Ilyin I, et al (2003) Intercomparison study of numerical models for long-range atmospheric transport of mercury. Stage II comparison of modeling results with observations obtained during short-term measuring campaigns. MSC-E technical report. MSC-E, Moscow

  • Ryaboshapko A, Bullock RO, Christensen J, Cohen M, Dastoor A, Ilyin I, Petersen G, Syrakov D, Artz RS, Davignon D, Draxler RR (2007a) Intercomparison study of atmospheric mercury models: 1. comparison of models with short-term measurements. Sci Total Environ 376(1-3):228–240. doi:10.1016/j.scitotenv.2007.01.072

    Article  CAS  Google Scholar 

  • Ryaboshapko A, Bullock RO, Christensen J, Cohen M, Dastoor A, Ilyin I, Petersen G, Syrakov D, Travnikov O, Artz RS, Davignon D, Draxler RR, Munthe J, Pacyna J (2007b) Intercomparison study of atmospheric mercury models: 2. modelling results vs. long-term observations and comparison of country deposition budgets. Sci Total Environ 377(2–3):319–333. doi:10.1016/j.scitotenv.2007.01.071

    Article  CAS  Google Scholar 

  • Salzmann M, Lawrence MG (2006) Automatic coding of chemistry solvers in WRF-Chem using KPP. In: 7th WRF Users Workshop, Boulder, Colorado, USA

  • Sandu A, Sander R (2006) Technical note: simulating chemical systems in fortran90 and MATLAB with the kinetic preprocessor KPP-2.1. Atmos Chem Phys 6(1):187–195. doi:10.5194/acp-6-187-2006

    Article  CAS  Google Scholar 

  • Sandu A, Daescu DN, Carmichael GR (2003) Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I—theory and software tools. Atmos Environ 37(36):5083–5096. doi:10.1016/j.atmosenv.2003.08.019

    Article  CAS  Google Scholar 

  • Schürmann GJ, Algieri A, Hedgecock IM, Manna G, Pirrone N, Sprovieri F (2009) Modelling local and synoptic scale influences on ozone concentrations in a topographically complex region of Southern Italy. Atmos Environ 43:4424–4434

    Article  Google Scholar 

  • Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C (2004) Global source attribution for mercury deposition in the United States. Environ Sci Technol 38(2):555–569

    Article  CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63

    Article  Google Scholar 

  • Selin NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaeglé L, Jaffe D (2007) Chemical cycling and deposition of atmospheric mercury: global constraints from observations. J Geophys Res Atmos 112(D2):D02308

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Wang HuangWX-Y, Powers JG (2008) A description of the advanced research WRF version 3, technical report. National Center for Atmospheric Research, Boulder

  • Sommar J, Gårdfeldt K, Strömberg D, Feng X (2001) A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. Atmos Environ 35(17):3049–3054. doi:10.1016/S1352-2310(01)00108-X

    Article  CAS  Google Scholar 

  • Sprovieri F, Pirrone N, Gårdfeldt K, Sommar J (2003) Mercury speciation in the marine boundary layer along a 6000 km cruise path around the Mediterranean Sea. Atmos Environ 37(Supplement 1):63–71

    Article  Google Scholar 

  • Sprovieri F, Hedgecock IM, Pirrone N (2010) An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer. Atmos Chem Phys 10(8):3985–3997. doi:10.5194/acp-10-3985-2010

    Article  CAS  Google Scholar 

  • Stockwell WR, Middleton P, Chang JS, Taang X (1990) The second-generation regional acid deposition model chemical mechanism for regional air quality modelling. J Geophys Res 95:16343–16367

    Article  CAS  Google Scholar 

  • Storelli M, Stuffler R, Marcotrigiano G (2002) Total and methylmercury residues in tuna-fish from the Mediterranean Sea. Food Addit Contam 19(8):715–720

    Article  CAS  Google Scholar 

  • Storelli M, Giacominelli-Stuffler R, Storelli A, Marcotrigiano G (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50(9):1004–1007

    Article  CAS  Google Scholar 

  • Storelli MM, Barone G, Cuttone G, Giungato D, Garofalo R (2010) Occurrence of toxic metals (Hg, Cd and Pb) in fresh and canned tuna: public health implications. Food Chem Toxicol 48(11):3167–3170. doi:10.1016/j.fct.2010.08.013, http://www.sciencedirect.com/science/article/pii/S0278691510005235

    Article  CAS  Google Scholar 

  • Subir M, Ariya PA, Dastoor AP (2011) A review of uncertainties in atmospheric modeling of mercury chemistry I. uncertainties in existing kinetic parameters fundamental limitations and the importance of heterogeneous chemistry. Atmos Environ 45(32):5664–5676

    Article  CAS  Google Scholar 

  • Subir M, Ariya PA, Dastoor AP (2012) A review of the sources of uncertainties in atmospheric mercury modeling II: mercury surface and heterogeneous chemistry a missing link. Atmos Environ 46:1–10

    Article  CAS  Google Scholar 

  • Tie X, Madronich S, Li GH, Ying Z, Zhang R, Garcia AR, Lee-Taylor J, Liu Y (2007) Characterizations of chemical oxidants in Mexico City: a regional chemical dynamical model (WRF-Chem) study. Atmos Environ 41(9):1989–2008. doi:10.1016/j.atmosenv.2006.10.053

    Article  CAS  Google Scholar 

  • Tuccella P, Curci G, Visconti G, Bessagnet B, Menut L, Park RJ (2012) Modeling of gas and aerosol with WRF/chem over Europe: evaluation and sensitivity study. J Geophys Res Atmos 117(D3). doi:10.1029/2011JD016302

    Google Scholar 

  • UNEP (2013) Mercury: time to act. Technical report. Chemicals Branch, Division of Technology, Industry and Economics, United Nations Environment Programme (UNEP), Nairobi

  • Vinken GCM, Boersma KF, Jacob DJ, Meijer EW (2011) Accounting for non-linear chemistry of ship plumes in the geos-chem global chemistry transport model. Atmos Chem Phys Discuss 11(6):17789–17823

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Oceans 97(C5):7373–7382. doi:10.1029/92JC00188

    Article  Google Scholar 

  • Wesely M (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23(6):1293–1304. doi:10.1016/0004-6981(89)90153-4

    Article  CAS  Google Scholar 

  • Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, Soja AJ (2011) The fire inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev 4(3):625–641. doi:10.5194/gmd-4-625-2011

    Article  Google Scholar 

  • Wild O, Zhu X, Prather MJ (2000) Fast-j: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models. J Atmos Chem 37(3):245–282. doi:10.1023/A:1006415919030

    Article  CAS  Google Scholar 

  • žagar D, Sirnik N, Četina M, Horvat M, Kotnik J, Ogrinc N, Hedgecock IM, Cinnirella S, De Simone F, Gencarelli CN, Pirrone N (2013) Mercury in the Mediterranean part 2: processes and mass balance. Environmental Science and Pollution Research (in this issue). doi:10.1007/s11356-013-2055-5

  • Zhang L, Wright LP, Blanchard P (2009) A review of current knowledge concerning dry deposition of atmospheric mercury. Atmos Environ 43(37):5853–5864. doi:10.1016/j.atmosenv.2009.08.019

    Article  CAS  Google Scholar 

  • Zhang L, Blanchard P, Johnson D, Dastoor A, Ryzhkov A, Lin C, Vijayaraghavan K, Gay D, Holsen T, Huang J, Graydon J, Louis VS, Castro M, Miller E, Marsik F, Lu J, Poissant L, Pilote M, Zhang K (2012a) Assessment of modeled mercury dry deposition over the Great Lakes region. Environ Pollut 161(0):272–283. doi:10.1016/j.envpol.2011.06.003

    Article  CAS  Google Scholar 

  • Zhang Y, Jaeglé L, van Donkelaar A, Martin R, Holmes C, Amos H, Wang Q, Talbot R, Artz R, Brooks S, et al (2012b) Nested-grid simulation of mercury over North America. Atmos Chem Phys 12(14):6095–6111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the WRF/Chem developers and to the NCAR Atmospheric Chemistry Division for making the WRF/Chem preprocessor codes freely available. We gratefully acknowledge EMEP for maintaining and making available the database of monitoring station data. The research was performed in the framework of the EU project GMOS (FP7-265113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Natale Gencarelli.

Additional information

Responsible editor: Michael Matthies

Electronic supplementary material

Below is the link to the electronic supplementary material.

(KML 48.5 KB)

(KML 16.7 MB)

(KML 5.29 KB)

(KML 5.71 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gencarelli, C.N., De Simone, F., Hedgecock, I.M. et al. Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation. Environ Sci Pollut Res 21, 4095–4109 (2014). https://doi.org/10.1007/s11356-013-2162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2162-3

Keywords